Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 30xy chia cho 5 dư 2 nên y = 2 hoặc y = 7
30xy chia hết cho 2 nên y = 2
30xy chia hết cho 9 nên 3 + 0 + x + 2 chia hết cho 9 hay 5 + x chia hết cho 9. Vậy x = 4
Số đó là 3042
Do a chia hết cho các số 5 và 9
\(\Rightarrow\)a \(\in\) BC(5;9) mà BCNN(5;9) = 45
\(\Rightarrow\)a \(\in\) {0;45;90;...)
Mà a có 10 ước \(\Rightarrow\)a = 90
Vậy số tự nhiên cần tìm là 90
Vì a là số nguyên tố > 3 nên a có dạng a = 3k + 1 hoặc a = 3k + 2 \(\left(k\inℕ\right)\)
-Nếu a = 3k + 1 thì \(\left(a-1\right)\cdot\left(a+4\right)=\left(3k+1-1\right)\left(3k+1+4\right)=3k\left(3k+5\right)\)
TH1: k là số chẵn thì \(k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)
TH2: k là số lẻ thì \(3k+5⋮2\Rightarrow k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)
-Nếu a = 3k + 2 thì \(\left(a-1\right)\left(a+4\right)=\left(3k+2-1\right)\left(3k+2+4\right)=\left(3k+1\right)\left(3k+6\right)\)
Chứng minh tương tự như trên ta cũng được \(\left(a-1\right)\left(a+4\right)⋮6\)
Chứng minh rằng A chia hết cho 15 => A chia hết cho 3 và 5
Giải:
A = 2 + 22 + 23 +...+ 2100
<=> A = ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
<=> A = 6+ 22 ( 2+22 )+ ...+ 298 (2+22 )
<=> A = 6+ 22 .6+ ...+ 298 .6
<=> A = 6.(22+...+298 ) chia hết cho 3 ( vì 6 chia hết cho 3)
chứng minh tương tự cho A chia hết cho 5
Tìm chữ số tận cùng của A?
Giải:
Ta có:
2^1 + 2^2 + 2^3 + 2^4 = 2 + 4 + 8 + 16 = 30 tức có tận cùng là 0
2^5 + 2^6 + 2^7 + 2^8 = 32 + 64 + 128 + 256 = 480 tức có tận cùng là 0
Vậy cứ nhóm 4 số sẽ tận cùng là 0 mà từ 2^1 đến 2^100 chia hết cho 4 nhóm vừa đủ. Vậy chữ số tận cùng của A là
Gọi n;n+1;n+2;n+3;n+4 là 5 số tự nhiên liên tiếp
\(.\)Nếu n \(⋮\)5 \(\Rightarrow\)đpcm
\(.\)Nếu n không chia hết cho 5 => n = 5k + 1 hoặc n = 5k + 2 hoặc n = 5k + 3 hoặc n = 5k + 4
- Với n = 5k + 1 => n + 4 = 5k + 5 \(⋮\)5
- Với n = 5k + 2 => n + 3 = 5k + 5 \(⋮\)5
- Với n = 5k + 3 => n + 2 = 5k + 5 \(⋮\)5
- Với n = 5k + 4 => n + 1 = 5k + 5 \(⋮\)5
Vậy trong 5 số tự nhiên liên tiếp có một số luôn chia hết cho 5
Gọi 5 số tự nhiên liên tiếp là a, a + 1, a+2, a+3,a+4
Ta có:
a+a+1+a+2+a+3+a+4
= ( a+a+a+a+a) + ( 1 + 2 + 3 + 4 )
= 5.a+10
= 5. ( a + 2 ) chia hết cho 5
Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5
p nguyên tố > 3
=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguyên tố nên từ (*)
=> 5p+1 chia hết cho 3
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
5n+2 : 3
Suy ra 5n : 3 dư 1
252 chia 3 cũng dư 1 ( 1 số chia 3 dư 1 hay 2 thì nâng lên lũy thừa bậc 2 chia 3 sẽ dư 1)
252=3k+1
5n=3k+1
252+5n=3k+1+3k+1=6k+2
Có 6k+2 chia hết cho 3, nhưng 2 ko chia hết cho 3 nên.....
Câu A hơi khó