K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

theo đầu bài ta có

x1x2<0

Ta sử dụng hệ thức VIet

x1x2=\(\frac{c}{a}\)=-1

=> Pt có 2 nghiệm trái dấu

Phần còn lại tính nghiệm ra rồi thay vao máy tính tính

22 tháng 5 2017

giảm bậc bạn

29 tháng 5 2017

bạn giúp mình được k

5 tháng 2 2020

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)

Theo Vi-et ta có \(\hept{\begin{cases}x_1+x_2=\frac{m+3}{2}&x_1.x_2=\frac{m}{2}&\end{cases}}\)

ĐĂT \(A=!x_1-x_2!\)

\(\Rightarrow A^2=\left(!x_1-x_2!\right)=\left(x_1+x_2\right)^2-4x_1x_2\)

\(\Leftrightarrow A^2=\frac{\left(m+3\right)^2}{2^2}-\frac{4m}{2}\)

\(\Leftrightarrow4A^2=m^2-8m+16-16-9\)

\(\Leftrightarrow4A^2=\left(m-4\right)^2-25\ge25\)

\(Min4A^2=25\Rightarrow MinA=\frac{1}{2}\Leftrightarrow\left(m-4\right)^2=0\Leftrightarrow m=4\) gía trị cần tìm

Vậy m=4 là giá trị cần tìm

\(\Leftrightarrow4A^2=m^2-2m+9\)

\(\Leftrightarrow4A^2=\left(m-1\right)+8\ge8\)

\(Min4A^2=8\Rightarrow MinA=\sqrt{2}\)

\(Khi\left(m-1\right)^2=0\Leftrightarrow m=1\)

Vậy \(m=1\)là giá trị cần tìm

4 tháng 4 2020
https://i.imgur.com/79k2sID.jpg
18 tháng 5 2015

x1;x2 là nghiệm của pt 

=> \(x^2_1-3\sqrt{2}x_1-\sqrt{2}=0\Rightarrow x^2_1=3\sqrt{2}x_1+\sqrt{2}\)

\(x^2_2-3\sqrt{2}x_2-\sqrt{2}=0\Rightarrow x^2_2=3\sqrt{2}x_2+\sqrt{2}\)

=> \(A=\frac{2}{3\sqrt{2}x_1+3\sqrt{2}x_2+\sqrt{2}-3\sqrt{2}}+\frac{3\sqrt{2}x_2+3\sqrt{2}x_1+\sqrt{2}-3\sqrt{2}}{2}\)

\(A=\frac{2}{3\sqrt{2}\left(x_1+x_2\right)-2\sqrt{2}}+\frac{3\sqrt{2}\left(x_2+x_1\right)-2\sqrt{2}}{2}\)

Theo VI ét => \(x_1+x_2=3\sqrt{2}\). Thay vào A

=> quy đồng.....