Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) -Ta có: MA+MB>AB,MB+MC>BC,MC+MD>CD,MD+MA>AD (Bất đẳng thức tam giác).
2.(MA+MB+MC+MD)>AB+BC+CD+AD
MA+MB+MC+MD>AB+BC+CD+AD/2 (1).
-Ta có: MA+MB+MC+MD=(MA+MC)+(MB+MD)=AC+BD
Mà AC<AB+BC, AC<AD (Bất đẳng thức tam giác).
2AC<AB+BC+CD+AD
Tương tự: 2BD<AB+BC+CD+AD
Do đó: 2AC+2BD<2.(AB+BC+CD+AD)
AC+BD<AB+BC+CD+AD
MA+MB+MC+MA<AB+BC+CD+AD (2)
Từ (1) và (2) AB+BC+CD+AD/2<MA+MB+MC+MA<AB+BC+CD+AD
Hi vọng bạn có kiến thức vững về BĐT tam giác nha, mấy bài này toàn BĐT tam giác thoi, mình ko chứng minh lại đâu.
Bài 3:
a) Xét tam giác AOB: \(OB>AB-AO\)
Xét tam giác DOC: \(OD>DC-OC\)
Cộng vế theo vế: \(OB+OD>AB+DC-\left(AO+OC\right)\Leftrightarrow BD>AB+DC-AC\Leftrightarrow BD+AC>AB+DC\)
b) Hoàn toàn tương tự với 2 tam giác AOD và BOC:
\(\Rightarrow\hept{\begin{cases}OD>AD-AO\\OB>BC-OC\end{cases}\Rightarrow BD>AD+BC-AC\Leftrightarrow BD+AC>AD+BC}\)
Bài 4:
a) Từ câu 3 ta có \(\hept{\begin{cases}BD+AC>AB+CD\\BD+AC>AD+BC\end{cases}}\)Cộng vế theo vế:
\(\Rightarrow2\left(BD+AC\right)>AB+BC+CD+DA=P_{ABCD}\Rightarrow BD+AC>\frac{P_{ABCD}}{2}\)
b) Câu này thực ra không cần đề cho trước \(AC< \frac{P_{ABCD}}{2}\)đâu, vì đây là điều hiển nhiên mà
Xét 2 tam giác ABC và ADC: \(\hept{\begin{cases}AC< AB+BC\\AC< AD+DC\end{cases}}\)cộng vế theo vế:
\(\Rightarrow2AC< AB+BC+CD+DA=P_{ABCD}\Rightarrow AC< \frac{P_{ABCD}}{2}\)(1)
Hoàn toàn tương tự với 2 tam giác ABD và CBD \(\Rightarrow BD< \frac{P_{ABCD}}{2}\)(2)
Cộng (1) và (2) vế theo vế: \(AC+BD< P_{ABCD}\)
A B C D M
Xét tam giác ABM; tam giác BCM; tam giác ADM; tam giác CDM ta có:
\(AM+BM>AB;BM+CM>BC;AM+DM>AD;CM+DM>CD\)
(áp dụng bất đẳng thức tam giác)
\(\Rightarrow AM+BM+BM+CM+AM+DM+CM+DM>AB+BC+AD+CD\)
\(\Rightarrow2.\left(AC+BD\right)>AB+BC+CD+AD\)(1)
\(\Rightarrow AC+BD>\dfrac{AB+BC+CD+AD}{2}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{AB+BC+CD+AD}{2}< AC+BD< AB+BC+CD+AD\)
Vậy trong 1 tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy(đpcm)
Chúc bạn học tốt!!!
Đề là MA + MB + MC + MD nha bạn!
Ta có: chu vi tứ giác = AB + BC + DC + AD
Theo bất đẳng thức tam giác:
MA + MB > AB
MB + MC > BC
MC + MD > DC
MD + MA > AD
=> MA + MB + MB + MC + MC + MD + MD + MA > AB + BC + DC + AD
=> 2MA + 2MB + 2MC + 2MD > AB + BC + DC + AD
=> 2(MA + MB + MC + MD) > AB + BC + DC + AD
=> MA + MB + MC + MD > \(\frac{1}{2}\)(AB + BC + DC + AD) (1)
Ta có MA + MB + MC + MD = AC + BD
Mà AC < AB + BC
AC < AD + DC
=> 2AC < AB + BC + DC + AD
Tương tự với BD
=> 2BD < AB + BC + DC + AD
=> 2AC + 2BD < 2(AB + BC + DC + AD)
=> 2(AC + BD) < 2(AB + BC + DC + AD)
=> AC + BD > AB + BC + DC + AD (2)
Từ (1) và (2) => đpcm