Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1\right)\Rightarrow\hept{\begin{cases}\sqrt{x}-\sqrt{y}=\frac{1}{\sqrt{z}}-\frac{1}{\sqrt{y}}=\frac{\sqrt{y}-\sqrt{z}}{\sqrt{xy}}\\\sqrt{y}-\sqrt{z}=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{z}}=\frac{\sqrt{z}-\sqrt{x}}{\sqrt{xz}}\\\sqrt{z}-\sqrt{x}=\frac{1}{\sqrt{y}}-\frac{1}{\sqrt{x}}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\end{cases}\left(2\right)}\)
\(\left(2\right)\Rightarrow\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{y}-\sqrt{z}\right).\left(\sqrt{z}-\sqrt{x}\right)=\frac{\left(\sqrt{y}-\sqrt{z}\right).\left(\sqrt{z}-\sqrt{x}\right).\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{zyzxxy}}\left(3\right)\)\(Từ\left(3\right)\)Ta sẽ chứng minh được rằng \(\orbr{\begin{cases}x=y=z\\x.y.z=1\end{cases}}\)
\(P=\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1-xy}\right):\left(\frac{x+y+2xy+1-xy}{1-xy}\right)\)
\(=\left(\frac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\right):\left(\frac{\left(x+1\right)\left(y+1\right)}{1-xy}\right)\)
\(=\frac{2\sqrt{x}\left(y+1\right)}{\left(1-xy\right)}.\frac{\left(1-xy\right)}{\left(x+1\right)\left(y+1\right)}=\frac{2\sqrt{x}}{x+1}\)
\(x=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}-1\)
\(\Rightarrow P=\frac{2\left(\sqrt{3}-1\right)}{5-2\sqrt{3}}=\frac{2+6\sqrt{3}}{13}\)
Ta có \(1-P=1-\frac{2\sqrt{x}}{x+1}=\frac{x-2\sqrt{x}+1}{x+1}=\frac{\left(\sqrt{x}-1\right)^2}{x+1}\ge0\) \(\forall x\ge0\)
\(\Rightarrow1-P\ge0\Rightarrow P\le1\)
\(\left[\frac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}\right]\left[\frac{1-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right]^2=\left(x+\sqrt{x}+1\right)\frac{1}{\left(1+\sqrt{x}\right)^2}=\frac{x+\sqrt{x}+1}{x+2\sqrt{x}+1}\)
Đề bài sai
\(\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}\)
\(\sqrt{2011}-\sqrt{2010}=\frac{1}{\sqrt{2011}+\sqrt{2010}}\)
Do \(\sqrt{2012}>\sqrt{2010}\) \(\Rightarrow\sqrt{2012}+\sqrt{2011}>\sqrt{2011}+\sqrt{2010}>0\)
\(\Rightarrow\frac{1}{\sqrt{2012}+\sqrt{2011}}< \frac{1}{\sqrt{2011}+\sqrt{2010}}\Rightarrow\sqrt{2012}-\sqrt{2011}< \sqrt{2011}-\sqrt{2010}\)
\(A=\frac{x+2\sqrt{xy}+y-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
\(=\sqrt{x}-\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}-2\sqrt{y}\)
\(M^2=\left(\sqrt{x-1}+\sqrt{9-x}\right)^2\le2\left(x-1+9-x\right)=16\)
\(\Rightarrow M\le4\Rightarrow M_{max}=4\) khi \(x-1=9-x\Leftrightarrow x=5\)