K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

B A C D M N P Q

Xét tam giác ABC có M; N là trung điểm của Ab;AC nên:

MN//Ac; MN=1/2AC (1)

Xét tam giác ADC có P;Q là trung dime639 của AD; CD nên:

PQ//AC; PQ=1/2AC (2)

Từ (1) và (2) =>MNPQ là hình bình hành

Ta lại có: MQ là đg trung bình của tam giác ABD nên:

MQ//BD

Khi đó: MN//AC

14 tháng 11 2016

1

A B C D E F G H

Xét tam giác vuông AEH và EBF:

AH=BF (gt)

A=B (gt)

AE=EB (gt)

=>AEH=EBF (2 cạnh góc vuông)

=> EH=EF (2 cạnh tương ứng)

Chứng minh tương tự:

Ta có tam giác AEH=EBF=HGD=FCG

=>HG=GF=FE=EH

=>EFGH là hình thoi

8 tháng 11 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

1 tháng 11 2018

Xuân Toàn bạn bị sao vậy

21 tháng 4 2017

Bài giải:

Ta có: EB = EA, FB = FA (gt)

nên EF là đường trung bình của ∆ABC.

Do đó EF // AC

HD = HA, GD = GC (gt)

nên HG là đường trung bình của ∆ADC.

Do đó HG // AC

Suy ra EF // HG (1)

Chứng minh tương tự EH // FC (2)

Từ (1) (2) ta được EFGH là hình bình hành.

Lại có EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

nên ˆFEHFEH^ = 900

Hình bình hành EFGH có ˆEE^ = 900 nên là hình chữ nhật.


21 tháng 4 2017

Bài giải:

Ta có: EB = EA, FB = FA (gt)

nên EF là đường trung bình của ∆ABC.

Do đó EF // AC

HD = HA, GD = GC (gt)

nên HG là đường trung bình của ∆ADC.

Do đó HG // AC

Suy ra EF // HG (1)

Chứng minh tương tự EH // FC (2)

Từ (1) (2) ta được EFGH là hình bình hành.

Lại có EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

nên ˆFEHFEH^ = 900

Hình bình hành EFGH có ˆEE^ = 900 nên là hình chữ nhật.

26 tháng 10 2017

Gọi hình thoi là ABCD

Bốn trung điểm của AB,BC,CD,DA là M,N,P,Q 
Nối đường chéo AC và BD 
Xét tam giác ABD,chứng minh MQ là đường trung bình(qua 2 trung điêm 
suy ra MQ //=BD (1) 
Xét tam giác CBD,chưng minh NP là đường trung bình 
suy raNP //=BD (2) 
tỪ (1) VÀ (2) SUY RA 
MNPQ là hình bình hành 
Ta có AC vuông goc BD(tinh chất đường chéo hinh thoi) 
suy raMN vuông góc MQ 
Hay góc M =90 độ 
Vậy tứ giác MNPQ là hình chữ nhât(hinh binh hanh có 1 goc vuông )

8 tháng 11 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

16 tháng 10 2015

 Gọi ABCD là hình chữ nhật 
M,N,P,Q là trung điểm 4 canh AB,BC,CD,DA 
Kẻ đường chéo AC ,BD 
Xét tam giác ABC,ta có M,N là đường trugn binh của tam giác ABC 
=> MN //= 1/2 AC (1) 
Chưng minh tương tự với tam giác ACD => PQ//= 1/2 AC (2) 
Tam giac ABD có MQ là đường trung binh => MQ //=1/2 BD (3) 
Tam giác BDC có NP là đương trung binh => NP //=1/2 BD (4) 
tỪ (1),(2),(3),(4) có AC=BD (đương chéo chữ nhật)=>MN =NP=PQ=QM 
Hay MNPQ là hinh thoi

 

21 tháng 4 2017

Bài giải:

Bốn tam giác vuông EAH, EBF, GDH, GCF có:

AE = BE = DG = CG

( = 1212AB = 1212CD)

HA = FB = DH = CF

( = 1212AD = 1212BC)

Nên ∆EAH = ∆EBF = ∆GDH = ∆GCF (c.g.c)

Suy ra EH = EF = GH = GF

Vậy EFGH là hình thoi (theo định nghĩa)

21 tháng 4 2017

Bốn tam giác vuông EAH, EBF, GDH, GCF có:

AE = BE = DG = CG

( = 1212AB = 1212CD)

HA = FB = DH = CF

( = 1212AD = 1212BC)

Nên ∆EAH = ∆EBF = ∆GDH = ∆GCF (c.g.c)

Suy ra EH = EF = GH = GF

Vậy EFGH là hình thoi (theo định nghĩa)

29 tháng 11 2021

Tham khảo: https://loigiaihay.com/bai-75-trang-106-sgk-toan-8-tap-1-c43a3348.html

29 tháng 11 2021

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Xét tam giác ABC có E và F lần lượt là trung điểm của AB và BC

=> EF là đường trung bình của tam giác ABC

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Tương tự tam giác ADC có HG là đường trung bình nên:

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

Từ (1) và (2) suy ra: EF // HG và EF = HG

=> tứ giác EFGH là hình bình hành.

Lại có: EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

Nên Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

Hình bình hành EFGH có Ê = 90º nên là hình chữ nhật