Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi d là ƯCLN của 12n+1/30n+2, ta có
12n+1 chia hết cho d và 30n+2 chia hết cho d, ta có
(12n+1)-(30n+2) chia hết cho d
=> 5(12n+1)-2(30n+20 chia hết cho d
60n+5-60n-4 chia hết cho d
60n-60n+5-4 chia hết cho d
1 chia hết cho d => d=1 hay ƯCLN của 12n+1 và 30n+2
Vậy 12n+1/30n+2 là phân số tối giản
câu b tương tự
đúng mình cái
a
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
Gọi ƯCLN (12n+1;30n+2) = d ( d thuộc N sao )
=> 12n+1 và 30n+2 đều chia hết cho d
=> 5.(12n+1) và 2.(30n+2) đều chia hết cho d
=> 60n+5 và 60n+4 đều chia hết cho d
=> 60n+5-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d=1 ( vì d thuộc N sao )
=> ƯCLN (12n+1;30n+2) = 1
=> phân số 12n+1/30n+2 là phân số tối giản
Tk mk nha
Gọi d là ước chung lớn nhất của 12n+1 và 30n+2
Khi đó \(12n+1⋮d\Rightarrow5.\left(12n+1\right)⋮d\Rightarrow60n+5⋮d\)
\(30n+2⋮d\Rightarrow2.\left(30n+2\right)⋮d\Rightarrow60n+4⋮d\)
Do đó \(60n+5-60n-4⋮d\Rightarrow1⋮d\Rightarrow d=1\)( vì d là số nguyên tố )
Khi đó ƯCLN(12n+1;30n+2)=1 hay \(\frac{12n+1}{30n+2}\)là phân số tối giản
b. Gọi d là ƯCLN của 14n+17 và 21n+25
Ta có: * 14n+17 chia hết cho d
=> 3 (14n+17) chia hết cho d
=> 42n+51 chia hết cho d
* 21n+25 chia hết cho d
=> 2 (21n+25) chia hết cho d
=> 42n+50 chia hết cho d
Ta lại có:
42n+51 - (42n+50) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> B là phân số tối giản
nhấn đ-ú-n-g cko mìh nhaz
a,(12n+1;30n+2)=1
12n+1 chia hết cho d
30n+2 chia hết cho d
<=>60n+5 chia hết cho d
60n+4 chia hết cho d
=>(12n+1 - 30n+2)=(60n+5)-(60n+4)=1
b) Gọi ƯCLN( 14n+17;21n+25)=d (d thuộc N*)
Ta có : 14n+17 chia hết cho d và 21n+25 chia hết cho d
Suy ra 3(14n+17) chia hết cho d và 2(21n+25 ) chia hết cho d
Suy ra 42n+51 chia hết cho d và 42n +50 chia hết cho d
Suy ra (42n+51)- 42n- 50 chia hết cho d
d=1
14n+17 và 21n+25 là 2 số nguyên tố cùng nhau
Vậy \(\frac{14n+17}{21n+25}\)là phân số tối giản
K mình nha
a)Gọi ƯCLN(12n+1;30n+2)=d (d thuộc N*)
Ta có :12n+1chia hết cho d; 30n+2 chia hết cho d
Suy ra 5(12n+1) chia hết cho n
2(30n+2) chia hết cho n
Suy ra 60n+5 chia hết cho n và 60n+4 chia hết cho n
Suy ra (60n+5)-(60n+4) chia hết cho d
1 chia hết cho d
d=1
12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
Vậy \(\frac{12n+1}{30n+2}\)là phhân số tối giản (đpcm)
a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath
a) Gọi d = ƯCLN (12n + 1; 30n + 2)
=> 12n + 1 chia hết cho d
30n + 2 chia hết cho d
=> 5. (12n + 1) chia hết cho d và 2. (30n + 2) chia hết cho d
Hay 60n + 5 chia hết cho d và 60n + 4 chia hết cho d
=> 60n + 5 - (60n + 4) = 1 chia hết cho d => 1 chia hết cho d => d = 1
=> 12n + 1 và 30n + 2 nguyên tố cùng nhau => PS đã cho tối giản
b) d = ƯCLN (21n + 4; 14n + 3)
=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d
=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d
=> 42n + 8 và 42n + 9 chia hết cho d
=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1
=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản
a, \(A=\frac{12n+1}{30n+2}\)
Gọi \(d=ƯCLN\left(12n+1;30n+2\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
b, \(B=\frac{14n+17}{21n+25}\)
Gọi \(d=ƯCLN\left(14n+17;21n+25\right)\)
\(\Rightarrow\hept{\begin{cases}14n+17⋮d\\21n+25⋮d\end{cases}\Rightarrow\hept{\begin{cases}42n+51⋮d\\42n+50⋮d\end{cases}}}\)
\(\Rightarrow\left(42n+51\right)-\left(42n+50\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
#Giải:
a) Gọi d = ƯC (12n + 1, 30n + 2 )
Xét hiệu :
(30n + 2) - (12n + 1) chia hết cho d
2(30n + 2) - 5 (12n + 1 ) chia hết cho d
60n + 4 - 60n - 5 chia hết cho d
4 - 5 chia hết cho d
=> -1 chia hết cho d
=> d € Ư (-1)
Ư (-1) = { 1 ; -1 }
Vậy A là phân số tối giản
b)*Tương tự*
Gọi (12n+1,30n+2)=d
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d (1)
30n+2 chia hết cho d => 2(30n+2) chia hết cho d (2)
Từ (1) và (2) => 5(12n+1) - 2(30n+2) chia hết cho d
60n+5 - 60n+4 chia hết cho d
1 chia hết cho d
=> d=1
=> 12n+1/30n+2 là phân số tối giản
Phần tiếp theo tương tự
minh kho biet