Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+3^3+3^4+...+3^{2015}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{2012}\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{2012}\right)\)
\(=40\left(1+3^4+...+3^{2012}\right)\)\(⋮\)\(5\)
\(B=2+2^2+2^3+...+2^{2016}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2013}+2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+..+2^{2013}\left(1+2+2^2+2^3\right)\)
\(=\left(1+2+2^2+2^3\right)\left(2+2^5+...+2^{2013}\right)\)
\(=15\left(2+2^5+...+2^{2013}\right)\)\(⋮\)\(15\)
A = 31 + 32 +33 + 34 +.....+32015+ 32016
A = (31 + 32) +(33 + 34) +.....+ (32015+ 32016)
A = 3(1+3) + 32(1+3) + .....+ 32015(1+3)
A = 3.4 +32.4 +....... + 32015.4
A = 4(3 +32 +....+ 32015) chia hết cho 4
===================================================
A =31 + 32 +33 + 34 + 35 +36 +.....+32014 + 32015+ 32016
A = (31 + 32 +33 ) +(34 + 35 +36) +.....+ (32014 + 32015+ 32016)
A = 3(1+3+32) + 34(1+3+32) + .....+ 32014(1+3+32)
A = 3.13 +34.13 +....... + 32014.13
A = 13.(3 +34 +....+ 32014) chia hết cho 13
A = (3 + 3^2 + 3^3 + 3^4) +...+ (3^2013 + 3^2014 + 3^2015 + 3^2016)
A = (3 + 3^2 + 3^3 + 3^4) +...+ 3^2012(3 + 3^2 + 3^3 + 3^4)
A = 120 +...+ 3^2012.120
A = 120.(1 +...+ 3^2012)
Vì 120 chia hết cho 60 nên 120.(1 +...+ 3^2012) chia hết cho 60 hay A chia hết cho 60(đpcm)
Tick cho mình nha.
tổng trên có số hạng là (2016-1):1+1=2016
vì 2016 chia hết cho 4 nên nhóm 4 số vào một nhóm ta được
A=(3+32+33+34)+(35+36+37+38)+…+(32013+32014+32015+32016)
A=3x(1+3+32+33)+35x(1+3+32+33)+…+32013x(1+3+32+33)
A=3x40+35x40+…+32013x40
A=40x(3+35+…+32013)
vì 40 chia hết cho 40
suy ra Achia hết cho 40
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
\(a,\)Ta có:
\(A=3+3^2+3^3+...+3^{10}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)
\(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)
\(=4\left(3+3^3+...+3^9\right)⋮4\)
\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)
\(\Rightarrow\)ĐPCM
Câu 2:
\(C=3^{10}+3^{11}+3^{12}+...+3^{17}.\)
\(C=\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+3^{15}+3^{16}+3^{17}\right).\)
\(C=3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right).\)
\(C=3^{10}\left(1+3+9+27\right)+3^{14}\left(1+3+9+27\right).\)
\(C=3^{10}.40+3^{14}.40.\)
\(C=\left(3^{10}+3^{14}\right).40⋮40\left(đpcm\right).\)
\(C=3^{10}+3^{11}+..+3^{17}\\ =\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+..+3^{17}\right)\\ =3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right)\\ =40\left(3^{10}+3^{14}\right)⋮40\)
A=3+32+.........+32016
A=3.(1+3+9+27)+.....+32013.(1+3+9+27)
A=3.40+.....+32013.40
A=40.(3+...+32013)
=> A\(⋮40\)
=> ĐPCM .