Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
A=10^n+72n-1=10^n-1+72n
10^n-1=99..9(có n-1 số n)=9.(11...1) có n số1
A=10^n-1+72n+9x(11..1)+72n suy ra A chia hết cho 9= 11..11+8n=11.11-n+9n
ta thấy 11..1 có n số 1 có tổng các chữ số là n
suy ra 11..1-n chia hết cho 9
tick nha
Ta có :
Cho biểu thức tính trên là A
A = 10 n + 72n ‐ 1 = 10 n ‐ 1 + 72n
10 n ‐ 1 = 99...9 ﴾có n‐1 chữ số 9﴿ = 9x﴾11..1﴿ ﴾có n chữ số 1﴿
A = 10 n ‐ 1 + 72n = 9x﴾11...1﴿ + 72n => A : 9 = 11..1 + 8n = 11...1 ‐n + 9n
Ta thấy: 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 ‐ n chia hết cho 9
=> A : 9 = 11..1 ‐ n + 9n chia hết cho 9
Vậy A chia hết cho 81
mình ghi lại đề nhé
Chứng tỏ rằng :
a, 1028 + 8 chia hết cho 72
b, 88 + 220 chia hết cho 17
c, 10n + 18n - 1 chia hết cho 27
d, 10n +72n - 1 chia hết cho 81
a) 1028 = (2.5)28 = 228.528 => 1028 chia hết cho 23 hay 1028 chia hết cho 8 => 1028 + 8 chia hết cho 8
Mà 1028 + 8 = 1000...08 có tổng các chữ số bằng 9 => 1028 + 8 chia hết cho 9
=> 1028 + 8 chia hết cho 8.9 = 72
b) 88 + 220 = (23)8 + 220 = 224 + 220 = 220.(24 + 1) = 220.17 chia hết cho 17 => 88 + 220 chia hết cho 17
c) 10n + 18n - 1 = (10n - 1) - 9n + 27n = 999...9 - 9n + 27n (Có n chữ số 9)
= 9.111...1 - 9n + 27n (Có n chữ số 1)
= 9.(111...1 - n) + 27n
Nhận xét: 111...1 có tổng các chữ số là 1+ 1 + 1+ ..+ 1 = n => 111...1 - n chia hết cho 3
=> 9.(111...1 - n) chia hết cho 9.3 = 27
Mà 27n chia hết cho 27
Nên 9.(111...1 - n) + 27n chia hết cho 27
Vậy....
d) 10n + 72n - 1 = (10n - 1) - 9n + 81n = 99...9 - 9n + 81n (Có n chữ số 9)
= 9.(11..1 - n) + 81n
Nhận xét: 111...1 có tổng các chữ số là n => 111...1 - n chia hết cho 9
=> 9.(11...1 - n) chia hết cho 9.9 = 81
Mà 81n chia hết cho 81
Nên 9.(11..1 - n) + 81n chia hết cho 81
Vậy...
a) 10n + 18n - 1 = (10n - 1) + 18n = 99...9 + 27n - 9n ( Số 99...9 có n chữ số 9)
= (99...9 - 9n) + 27n = 9.(11...1 - n) + 27n ( có n chữ số 1)
Nhận xét: Số 11...1 có tổng các chữ số bằng 1 + 1...+ 1 = n
Mà ta có: Số tự nhiên và tổng các chữ số của nó có cùng số dư khi chia cho 3 => 11...1 và n có cùng số dư khi chia cho 3
=> 11...1 - n chia hết cho 3 => 9.(11...1 - n) chia hết cho 9.3 = 27
Ta có: 27n chia hết cho 27 nên 9.(11...1 - n) + 27n ( có n chữ số 1) chia hết cho 27
Vậy 10n + 18n - 1 chia hết cho 27
b) Tương tự câu a)
10^n+72n-1
=10^n-1+72n
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n
Ta có:
10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9
=>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81
=>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81
=>đpcm.
10n+72-1=10n-1-9n+81n
=999.....99(n chữ số)-9n+81n
=9(1111...1(n chữ số)+n)+81n
Ta dễ thấy rằng 111..1(n chữ số) và n có cùng số dư khi chia cho 9
nên 1111...1(n chữ số)-n chia hết cho 9
=> 9(111...1(n chữ số)-n) chia hết cho 81
Mà 81n cũng chia hết cho 81
=> 10n+72n-1 chia hết cho 81 với
n E N
\(B=10^n+72n-1\)
\(=10^n-1-9n+81n\)
\(=99...9-9n+81n\)(\(n\)chữ số \(9\))
\(=9\times11...1-9n+81n\)(\(n\)chữ số \(1\))
\(=9\times\left(11...1-n\right)+81n\)(\(n\)chữ số \(1\))
Ta có: \(11...1-n⋮9\)(\(n\)chữ số \(1\)) vì tổng các chữ số của \(11...1\)là \(n\)nên \(11...1\equiv n\left(mod9\right)\).
Do đó \(9\times\left(11...1-n\right)⋮81\Leftrightarrow B⋮81\).
Bạn tham khảo cách giải trong câu hỏi tương tự nha !!!