\(\sqrt{a^2+b^2}.\sqrt{b^2+c^2}\g...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

b a c A B C H

Xét hình sau.

\(\hept{\begin{cases}\sqrt{a^2+b^2}=AB\\\sqrt{b^2+c^2}=BC\end{cases}}\)

Cần chứng minh \(AB.BC\ge BH.AC\)

Ta có: \(BH.AC=2S_{\Delta ABC}=AB.BC.\sin ABC\)

Vậy cần chứng minh \(AB.BC\ge AB.BC.\sin ABC\Leftrightarrow\sin ABC\le1\)

Bất bẳng thức cuối hiển nhiên đúng, nên ta có đpcm.

7 tháng 10 2018

b) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)

\(=\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-\sqrt{ab}+b-2b}{a-b}\)

\(=\dfrac{a}{a-b}\)

7 tháng 10 2018

khúc \(\dfrac{a}{a-b}\) sai nhé

\(=\dfrac{a-b}{a-b}=1\)

10 tháng 6 2019

a)\(\sqrt{x}+1>\sqrt{x+1}\) (x>0)

Có:\(\left(\sqrt{x}+1\right)^2=x+2\sqrt{x}+1\left(1\right)\) (x>0)

\(\sqrt{\left(x+1\right)^2}=x+1\) (2) (x>0)

từ (1) và (2) =>(đpcm)

b)\(\sqrt{x^2+1}>x\)

Có:\(\sqrt{\left(x^2+1\right)^2}=x^2+1\left(1\right)\)

x2=x2 (2)

Từ (1) và (2) =>(đpcm)

c)\(\frac{1}{2}+a+b\ge\sqrt{a}+\sqrt{b}\left(a,b\ge0\right)\)

Vì a,b >or= 0

=>\(a+b\ge\sqrt{a}+\sqrt{b}\)

\(\Rightarrow\frac{1}{2}+a+b\ge\sqrt{a}+\sqrt{b}\) (đáng lẽ 1/2+a+b> mới phải)

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

17 tháng 9 2020

Mình chỉ thấy duy nhất cái đẳng thức.

14 tháng 9 2016

\(\sqrt{\left(a+c\right)\left(b+d\right)}\ge\sqrt{ab}+\sqrt{cd}\)

<=> \(\left(a+c\right)\left(b+d\right)\ge ab+2\sqrt{abcd}+cd\)  (bình phương hai vế)

<=> \(ab+ad+bc+cd\ge ab+2\sqrt{abcd}+cd\)

<=>\(ad-2\sqrt{abcd}+bc\ge0\)

<=> \(\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)  luôn luôn đúng với a,b,c,d>0

=>đpcm

 

14 tháng 9 2016

Áp dụng BĐT bu nhi a cốp-xki cho 4 số dương ,ta có:

\(\left(\sqrt{a}^2+\sqrt{c}^2\right)\left(\sqrt{b}^2+\sqrt{d}^2\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

hay \(\left(a+c\right)\left(b+d\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

\(\sqrt{\left(a+c\right)\left(b+d\right)}\ge\sqrt{ab}+\sqrt{cd}\)(đfcm)

13 tháng 6 2017

PP: Dùng tương đương thần chưởng !!!
Ý tưởng : Chứng minh 1/\sqrt{1+a^2} + 1/\sqrt{1+b^2} >= 2/\sqrt{1+ab} >= 2/\sqrt{ 1+ (a+b)^2/4 } 
._. Bạn biết đăng hình ảnh lên đây không mình  làm  ra rùi chụp cho (:

13 tháng 6 2017

BĐT trên chỉ đúng với ab=>1 mà lm gì có ở đề 

NV
22 tháng 6 2019

a/

\(=\frac{a+b}{b^2}.\frac{\left|a\right|.b^2}{\left|a+b\right|}=\frac{\left(a+b\right).b^2.\left|a\right|}{b^2\left(a+b\right)}=\left|a\right|\)

b/

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)