\(\ge\) (b+c-a)(a+c-b)(a+b-c)

với a,b,c là độ dà...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

Ta có : 

(b+c-a)(b+a-c)=b2-(c-a)2\(\le\) b2

(c+a-b)(c+b-a)=c2_(a-b)2\(\le\) c2

(a+b-c)(a+b-c)=a2-(b-c)2\(\le\) a2

nhân từng vế ba bất đẳng thức trên ,ta được :

[(b+c-a)(a+c-b)(a+b-c)]2\(\le\) [abc]2

các biểu thức trong dấu ngoặc vuông đều dương nên :

(b+c-a)(a+c-b)(a+b-c)\(\le\) abc

dấu "=" xảy ra khi a=b=c

4 tháng 6 2016

đặt b+c-a=x; a+c-b=y; a+b-c=z thì x,y,z>0

theo bất đẳng thức (x+y)(y+z)(z+x)\(\ge\) 8xyz

=> 2a.2b.2c\(\ge\) 8(b+c-a)(a+c-b)(a+b-c)

=>abc \(\ge\) (b+c-a)(a+c-b)(a+b-c)

xảy ra đẳng thức khi và chỉ khí a=b=c

5 tháng 3 2019

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

Tương tự cộng lại...

10 tháng 12 2015

Có:\(\frac{a}{b+c}>\frac{a}{a+b+c}\)vì a,b,c>0
tương tự \(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
Cộng từ vế lại \(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}=1\)

10 tháng 12 2015

bạn tham khảo ở câu hỏi tương tự nhé

tick mình đi

20 tháng 4 2016

bạn áp dụng bđt AM-GM đi , biến đổi cho ra a^2 vs b^2 vs c^2 rùi nhân vế theo vế là ra ấy mà

21 tháng 7 2020

khó vl

21 tháng 7 2020

Theo mình đề chứng minh: \(3Min\left\{\frac{a}{b}+\frac{b}{c}+\frac{c}{a},\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right\}\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

27 tháng 5 2019

1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0

theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :

2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )

\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

27 tháng 5 2019

Ta có a + b > c, b + c > a, a + c > b

Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

vậy ...

5 tháng 7 2021

Ta có:

A = \(\frac{a}{2b+3c}+\frac{b}{2c+3a}+\frac{c}{3b+2a}=\frac{a^2}{2ab+3ac}+\frac{b^2}{2bc+3ab}+\frac{c^2}{3bc+2ac}\)

\(\ge\frac{\left(a+b+c\right)^2}{2ab+3ac+2bc+3ab+3bc+2ac}\)(bđt svacxo \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\))

\(\ge\frac{\left(a+b+c\right)^2}{5\left(ab+bc+ac\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{5\left(a+b+c\right)^2}{3}}\) (bđt \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)(*)

CM bđt * <=> \(3xy+3yz+3xz\le x^2+y^2+z^2+2xz+2xy+2yz\)

<=> \(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\ge0\) (luôn đúng)

<=> A \(\ge\frac{3}{5}\) --> ĐPCM

17 tháng 4 2018

kết bạn với mk đi