K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

với n = 2k thì :

( 5.2k + 7 ) . ( 4.2k + 6 )

= ( 10k + 7 ) . ( 8k + 6 )

= ( 10k + 7 ) . 2 . ( 4k + 3 ) \(⋮\)2

với n = 2k + 1 thì :

[ 5 . ( 2k + 1 ) + 7 ] . [ 4 . ( 2k + 1 ) + 6 ]

= ( 10k + 5 + 7 ) . ( 8k + 4 + 6 )

= ( 10k + 12 ) . ( 8k + 10 )

= 2 . ( 5k + 6 ) . 2 . ( 4k + 5 ) \(⋮\)2

12 tháng 7 2017

Thanks, nhưng có thể làm kiểu phân phối của lớp 6 đc ko?

5 tháng 10 2019

hello minh anh ak 

5 tháng 10 2019

bitch

27 tháng 2 2020

n^3 + 5n

= n^3 - n + 6n

= n(n^2 - 1) + 6n 

= n(n - 1)(n + 1) + 6n

(n-1)n(n+1) là tích của  3 stn liên tiếp

=> n(n-1)(n+1) chia hết cho 2 và 3 mà (2;3) = 1

=> n(n-1)(n+1) chia hết cho 6

có 6n chia hết cho 6

=> n(n-1)(n+1) + 6n chia hết cho 6

=> n^3 + 5n chia hết cho 6 với mọi n thuộc N

1 tháng 4 2020

Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !

18 tháng 7 2021

Ta có: n3+5n=n3n+6n=n(n21)+6n=n(n1)(n+1)+6nn3+5n=n3−n+6n=n(n2−1)+6n=n(n−1)(n+1)+6nVì n là số nguyên dương

=> Tích của ba số nguyên dương liên tiếp: n-1, n, n+1 chia hết cho 2 (vì trong 3 số trên chắc chắn có 1 hoặc 2 số lẻ) và chia hết cho 3 (vì trong 3 số trên chắc chắn có 1 số chia hết cho 3)

Mà 6n chia hết cho 6

=> n(n-1)(n+1) +6n chia hết cho 6

=> n3+5nn3+5n chia hết cho 6 (đpcm)

18 tháng 7 2021

Ta có n3 + 5n = n3 - n + 6n 

= n(n2 - 1) + 6n 

= n(n2 - n + n - 1) + 6n 

= n[n(n - 1) + (n - 1)] + 6n 

= n(n - 1)(n + 1) + 6n = (n - 1)n(n + 1) + 6n 

Nhận thấy (n - 1)n(n + 1) \(⋮\)6 (tích 3 số nguyên liên tiếp) 

Lại có 6n \(⋮\)

=> (n - 1)n(n + 1) + 6n \(⋮\)

=> n3 + 5n \(⋮\)\(\forall n\inℤ^+\)

12 tháng 5 2021

Giả sử A=4n3 - 6n2 + 3n + 37 chia hết cho 125 với mọi n là số tự nhiên .

-> 4n3 - 6n2 + 3n + 37 chia hết cho 5 

-> 2(4n3 - 6n2 + 3n + 37) chia hết cho 5

-> (2n-1)3 +75 chia hết cho 5

-> (2n-1)3 chia hết cho 5 -> 2n-1 chia hết cho 5 -> (2n-1)3 chia hết cho 125  nhưng 75 không chia hết cho 125 -> 2A không chia hết cho 125 -> A không chia hết cho 125 (trái giả thiết)

-> đpcm

23 tháng 10 2017

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^n.27+3^n.3+2^n.8+2^n.4\)

\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)

\(=3^n.30+2^n.12⋮6\left(dpcm\right)\)