\(\Delta\)đều ABC từ 1 điểm M nằm trong tam giác kẻ MH,MK,ML vuông góc với cạnh AB,BC,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2019

Gọi a là độ dài cạnh của tam giác ABC

+ Ta có : \(S_{AMB}+S_{BMC}+S_{AMC}=S_{ABC}\)

\(\Rightarrow\frac{1}{2}\cdot x\cdot a+\frac{1}{2}\cdot y\cdot a+\frac{1}{2}\cdot z\cdot a=\frac{1}{2}\cdot a\cdot h\)

\(\Rightarrow\frac{1}{2}a\left(x+y+z\right)=\frac{1}{2}a\cdot h\)

\(\Rightarrow x+y+z=h\)             ( do \(\frac{1}{2}a\ne0\) )

\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{1}{3}h^2\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

<=> M là giao điểm 3 đg phân giác của tam giác ABC

1 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{ax}\frac{1}{\sqrt{a}}+\sqrt{by}\frac{1}{\sqrt{b}}+\sqrt{cz}\frac{1}{\sqrt{c}}\)

\(\le\sqrt{\left(ax+by+cz\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{2S_{ABC}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)

\(=\sqrt{\frac{abc}{2R}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{\frac{ab+bc+ca}{2R}}\le\sqrt{\frac{a^2+b^2+c^2}{2R}}\)

1 tháng 4 2017

có bị ngược dấu ko nhỉ ?