\(0\le x,y,z,t\). và x+y+z+t=2. CMR xy+yz+zt+xt\(\le\)11....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)

\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)

\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)

\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)

b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)

Áp dụng câu a ta được

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)

15 tháng 6 2017

khó quá

10 tháng 5 2018

\(\text{Cho 3 số dương x, y, z thỏa mãn }x+y+z=3\)

\(\text{Chứng minh rằng }T=\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)

➤➤➤Chứng minh:

➢ Áp dụng bất đẳng thức AM - GM

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}\left(\text{vì }x+y+z=3\right)=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}=\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Tương tự:

\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Công vế theo vế 3 bất đẳng thức cùng chiều

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

\(\text{Đẳng thức xảy ra khi }x=y=z=1\)

\(Max_T=1\Leftrightarrow x=y=z=1\)

AH
Akai Haruma
Giáo viên
27 tháng 6 2020

Lời giải:

Do $x,y,z\in [0;1]$ nên $1+yz; 1+xz; 1+xy\geq 1+xyz$

$\Rightarrow \frac{x}{1+yz}+\frac{y}{1+xz}+\frac{z}{1+xy}\leq \frac{x+y+z}{1+xyz}$

Ta cần chứng minh: $\frac{x+y+z}{1+xyz}\leq 2$

$\Leftrightarrow x+y+z\leq 2+2xyz(*)$

Thật vậy:

$x,y\in [0;1]\Rightarrow (x-1)(y-1)\geq 0$

$\Leftrightarrow xy+1\geq x+y\Rightarrow xy+z+1\geq x+y+z(1)$
Mà:

$xy+z+1-(2+2xyz)=xy+z-2xyz-1=xy(1-z)-(1-z)-xyz=(xy-1)(1-z)-xyz\leq 0$ do $0\leq x,y,z\leq 1$)

$\Rightarrow xy+z+1\leq 2+2xyz(2)$

Từ $(1);(2)\Rightarrow x+y+z\leq 2+2xyz$

BĐT $(*)$ đc chứng minh nên ta có đpcm.

Dấu "=" xảy ra khi $(x,y,z)=(1,1,0)$ và hoán vị

1 tháng 7 2020

Trâu bò nhưng bù lại là đơn giản:

\(VP-VT\equiv f\left(x,y,z\right)=f\left(\frac{a}{a+1},\frac{b}{b+1},\frac{c}{c+1}\right)\ge0\)

Bất đẳng thức cuối quy đồng lên sẽ thấy điều hiển nhiên ;)

18 tháng 8 2019

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=4\)

=> \(\orbr{\begin{cases}x+y+z=2\\x+y+z=-2\end{cases}}\)

\(x+y+z=2\)

Thay vào Pt (1)

=> \(xy+z\left(2-z\right)=1\)

 => \(xy=\left(z-1\right)^2\)=> \(x,y,z\ge0\)( do \(x+y+z=2>0\))

Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{2-z}{2}\right)^2\)

=> \(z-1\le\frac{2-z}{2}\)=> \(z\le\frac{4}{3}\)

Hoàn toàn TT => \(x,y,z\le\frac{4}{3}\)

\(x+y+z=-2\)

=> \(xy+z\left(-2-z\right)=1\)

=> \(xy=\left(z+1\right)^2\)=> \(x,y,z\le0\)( do \(x+y+z=-2< 0\))

Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{-2-z}{2}\right)^2\)

=> \(\left(z+1\right)^2\le\left(\frac{z+2}{2}\right)^2\)

=> \(z+1\ge\frac{-z-2}{2}\)=> \(z\ge-\frac{4}{3}\)

TT => \(x,y,z\ge-\frac{4}{3}\)

Vậy \(-\frac{4}{3}\le x,y,z\le\frac{4}{3}\)

16 tháng 2 2018

ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Rightarrow x^2+y^2+z^2=9\)

áp dung bu nhi a \(2\left(y^2+z^2\right)\ge\left(y+z\right)^2\)

\(\Leftrightarrow2\left(9-x^2\right)\ge\left(5-x\right)^2\)

\(\Leftrightarrow18-2x^2\ge25-10x+x^2\)

\(\Leftrightarrow0< =3x^2-10x+7\)

suy ra 1<=x<=7/3

7 tháng 3 2018

Áp dụng BĐT AM-GM ta có: 

\(VT=\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{xz}{y+xz}}+\sqrt{\frac{yz}{x+yz}}\)

\(=\sqrt{\frac{xy}{z\left(x+y+z\right)+xy}}+\sqrt{\frac{xz}{y\left(x+y+z\right)+xz}}+\sqrt{\frac{yz}{x\left(x+y+z\right)+yz}}\)

\(=\sqrt{\frac{xy}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}+\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)

\(\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}+\frac{x}{x+y}+\frac{z}{y+z}+\frac{y}{x+y}+\frac{z}{x+z}\right)\)

\(=\frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)

Dấu "=" <=> \(x=y=z=\frac{1}{3}\)

Ủng hộ và kb với mình ha ^^

6 tháng 3 2018
Từ gt suy ra z=1-x-y Thầy vào sau đó áp dụng AM-GM

cj tìm ra nghiệm r e! x=y=z=1 . Nhưg mà vẫn chưa giải ra đc

1 tháng 12 2017

\(x,y,z\in\left[0;1\right]\) nên \(\left(x-1\right)\left(z-1\right)\ge0\Leftrightarrow xz+1\ge x+z\)

\(\Rightarrow xz+1+y\ge x+y+z\) \(\Rightarrow\dfrac{x}{1+y+zx}\le\dfrac{x}{x+y+z}\)

Tương tự ta có:

\(\dfrac{x}{1+y+xz}+\dfrac{y}{1+z+xy}+\dfrac{z}{1+x+yz}\le\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{z+y+z}=1\)

hay \(\dfrac{3}{x+y+z}\le1\Leftrightarrow x+y+z\ge3\)

\(x;y;z\in\left[0;1\right]\Rightarrow x+y+z\le3\)

\(\Rightarrow x+y+z=3\)\(x=y=z=1\)