Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ko bt đúng ko .
Đặt A=1.2+2.3+3.4+...+n(n+1)
A=1.2+2.3+3.4+...+n(n+1)
=>3A=(3−0)1.2+(4−1)2.3+...+(n+2−n+1)n(n+1)=>3A=(3−0)1.2+(4−1)2.3+...+(n+2−n+1)n(n+1)
=>3A=1.2.3−0.1.2+2.3.4−1.2.3+...+n(n+1)(n+2)−(n−1)n(n+1)=>3A=1.2.3−0.1.2+2.3.4−1.2.3+...+n(n+1)(n+2)−(n−1)n(n+1)
=>3A=n(n+1)(n+2)=>3A=n(n+1)(n+2)
=>A=n(n+1)(n+2)3=>A=n(n+1)(n+2)3 (đpcm)
Ta có:
\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow ab+bc+ca\le a^2+b^2+c^2\)
\(\Leftrightarrow3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=1\)
\(\Leftrightarrow ab+bc+ca\le\frac{1}{3}< \frac{1}{2}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}\)
\(< 1\)
cho n thuộc N, n>1
CMR : 1/n+1 + 1/n+2 + 1/n+3 + ... + 1/n+n < 3/4
giúp mik vs mik đang cần gập ạ 😚😚😚
1.2+2.3+3.4+ …+ n(n+1)
A = [1.2.(3 - 0) + 2.3.(4 - 1) + 3.4(5 – 2) + …..+ n(n + 1)( (n+2) – (n – 1))] : 3
A = [ 1.2.3 – 1.2.3 + 2.3.4 – 2.3.4 +……+ n( n+1)(n+2)] : 3
A = n(n+ 1)(n+2) :3
1.2.3 + 2.3.4+ 3.4.5 + ….+ n(n+1)(n+2)
= [ 1.2.3(4 – 0) + 2.3.4( 5 -1) + 3.4.5.(6 -2) + ……+ n(n+1)(n+2)( (n+3) – (n-1))]: 4
= n(n+1)(n+2)(n+3) : 4