K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

a)

Xét ΔvABD và ΔvHBD, ta có:

BD cạnh chung

∠ABD = ∠HBD ( BD là phân giác của ∠B )

⇒ ΔABD = ΔHBD ( ch-gn ) ( đpcm1 )

⇒ AB = HB ( cctứ ) ⇒ B thuộc đường trung trực của AH (1)

AD = HD ( cctứ ) ⇒ D thuộc đường trung trực của AH (2)

Từ (1), (2) ⇒ BD là đường trung trực của AH

⇒ BD ⊥ AH ( đpcm2 )

b)

Xét ΔvABC và ΔvHBK, ta có:

AB = HB ( cmt )

∠B chung

⇒ ΔABC = ΔHBK ( cgv-gn ) ( đpcm )

c)

ΔBKC: Hai đường cao CA và KH cắt nhau tại D

⇒ D là trực tâm của ΔBKC

⇒ BD là đường cao của ΔBKC

⇒ BD ⊥ KC

Vì BD ⊥ AH (cmt); BD ⊥ KC (cmt)

⇒ AH // KC

⇒ Tứ giác AHCK là hình thang

Hình thang AHCK có: AC = HK (ΔABC = ΔHBK)

⇒ Tứ giác ACHK là hình thang cân (đpcm)

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: ΔBAD=ΔBHD

=>BA=BH và DA=DH

=>BD là trung trực của AH

c: HD=DA(cmt)

DA<DK(ΔDAK vuông tại A)

=>HD<DK

5 tháng 8 2023

ý a thiếu

18 tháng 7 2015

b ) Xét tam giác ABD và tam giác KBD , có

BD cạnh chung

góc ABD = góc KBD ( gt )

BA = BK ( tam giác ABK cân tại B )

suy ra tam giác ABD = tam giác KBD ( c.g.c)

suy ra góc BAD = góc BKD ( 2 góc tương ứng)

mà góc BAD = 90 độ

suy ra BKD = 90 độ

nên DK vuông góc BC

19 tháng 7 2015

a) Tam giác ABK có BE vừa là đường cao vừa là phân giác nên tam giác ABK cân tại B

=> BE là đường trung trực của đoạn thẳng AK.

hay A và K đối xứng nhau qua BD.

b) Xét tam giác ABD và KBD có 

    AB=KB(tam giác ABK cân tại B)

Góc ABD=KBD(gt)

BD cạnh chung .

Vậy tam giác ABD và KBD bằng nhau theo trường hợp (c.g.c).

=> Góc DKB=DAB=90 độ(hai góc tương ứng)

hay DK vuông góc với BC.

c)Ta có:  góc: HAK+HKA=90 độ ( cùng phụ với góc H trong tam giác AHK).

       và góc: KAC+BAK= góc A= 90 độ

mà góc BAK= HKA( tam giác ABK cân tại B).

từ 3 điều này suy ra góc HAK=KAC hay AK là tia phân giác góc HAC.

d) Tam giác ABK có AH, BE là các đường cao giao nhau tại I nên I là trực tâm.

=> KI cũng là đường cao

Hay KI vuông góc với AB.

mà AC vuông góc với AB( do tam giác ABC vuông tại A)

TỪ hai điều này suy ra IK//AC

Tứ giác IKCA có IK//AC nên IKCA là hình thang.

31 tháng 7 2018

Trả lời 2 câu đầu nha, 2 câu sau tí nữa mình viết sau

a, \(\Delta ABC\)cân tại A có: AH là đường cao của \(\Delta ABC\)\(\Rightarrow\)AH là trung tuyến của \(\Delta ABC\)\(\Rightarrow BH=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)

\(\Delta ABH\)có \(\widehat{AHB}=90^o\)

\(\Rightarrow AB^2=AH^2+BH^2\)(định lý Py-ta-go)

hay \(10^2=AH^2+6^2\)

       \(AH^2=64\)

       \(AH=8\left(cm\right)\)

b, \(\Delta ABC\)có: \(HD//AC\left(gt\right)\)

                           \(BH=HC\left(cmt\right)\)

\(\Rightarrow BD=DA\)

\(\Delta ABH\)vuông tại H có: HD là trung tuyến của \(\Delta ABH\)\(\Rightarrow HD=BD=DA=\frac{AB}{2}\)

\(\Delta BDH\)có: \(HD=BD\left(cmt\right)\)\(\Rightarrow\Delta BDH\)cân tại D

31 tháng 7 2018

c, Nối D với C, H với E

Ta có: \(HD=BD\left(cmt\right)\\ BD=CE\left(gt\right)\)\(\Rightarrow HD=CE\)

Tứ giác DHEC có: \(HD//EC\left(gt\right)\\ HD=EC\left(cmt\right)\)\(\Rightarrow\)DHEC là hình bình hành \(\Rightarrow\)2 đường chéo DE và HC cắt nhau tại trung điểm của mỗi đường \(\Rightarrow\)I là trung điểm của DE

d,