Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{1}{1+xy}+\frac{1}{1+xz}+\frac{1}{1+yz}\ge\frac{9}{3+xy+xz+yz}\)
Lại có :\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow xy+yz+zx\le x^2+y^2+z^2\le3\)
\(\Rightarrow P\ge\frac{9}{3+3}=1.5\)
Dấu bằng xảy ra khi x=y=z=1
Bài 1: Theo đề : \(2ab+6bc+2ac=7abc\) \(;a,b,c>0\)
Chia cả 2 vế cho \(abc>0\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)
Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)
Khi đó: \(M=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)
\(\Rightarrow M=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z-\left(2x+y+4x+z+y+z\right)\)
\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)
Khi: \(\hept{\begin{cases}x=\frac{1}{2}\\y=z=1\end{cases}}\Rightarrow M=17\)
\(Min_M=17\Leftrightarrow a=2;b=1;c=1\)
ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡 chém bài khó nhất rồi nên em xin mạn phép chém bài dễ ạ.
2/\(VT=\Sigma_{cyc}\frac{\left(x+y+z\right)^2-x^2}{x\left(x+y+z\right)+yz}=\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}\)
\(\ge\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\frac{\left(2x+y+z\right)^2}{4}}=\Sigma_{cyc}\frac{4\left(y+z\right)}{2x+y+z}=\Sigma_{cyc}\frac{2\left(y+z-2x\right)}{2x+y+z}+6\)
\(=\Sigma_{cyc}\left(\frac{2\left(x+y+z\right)\left(y+z-2x\right)}{2x+y+z}-\frac{3}{2}\left(y+z-2x\right)\right)+6\)
\(=\Sigma_{cyc}\frac{\left(y+z-2x\right)^2}{2\left(2x+y+z\right)}+6\ge6\)
\(P=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{2}{2xy+2yz+2xz}\)
Theo Bất đẳng thức Cauchy Schwarz dạng Engel ta được :
\(\frac{1}{x^2+y^2+z^2}+\frac{\sqrt{2}^2}{2xy+2yz+2xz}\ge\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)
\(\ge\frac{1+2\sqrt{2}+2}{1^2}=3+2\sqrt{2}\)
Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}...\\...\\...\end{cases}}\)
Vậy \(Min_P=3+2\sqrt{2}\)khi và chỉ khi ...
dấu = bạn tự xét nhé :V
Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)ta có: \(a,b,c>0;a+b+c=1\)do đó 0<a,b,c<1
\(P=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+6\left(ab+bc+ca\right)\)
\(=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+2\left(a+b+c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)
\(=\left(\frac{b^2}{a}-2b+a\right)+\left(\frac{c^2}{b}-2c+b\right)+\left(\frac{a^2}{c}-2a+c\right)-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)
\(=\frac{\left(a-b\right)^2}{a}+\frac{\left(b-c\right)^2}{b}+\frac{\left(c-a\right)^2}{c}-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)
\(=\frac{\left(1-a\right)\left(a-b\right)^2}{a}+\frac{\left(1-b\right)\left(b-c\right)^2}{b}+\frac{\left(1-c\right)\left(c-a\right)^2}{c}+3\ge3\)
Vậy GTNN của P=3
\(P=\frac{9}{1-2\left(xy+yz+xz\right)}+\frac{2}{xyz}=\frac{9}{\left(x+y+z\right)^2-2\left(xy+yz+xz\right)}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{9}{x^2+y^2+z^2}+\frac{6\sqrt[3]{xyz}}{xyz}\ge\frac{9}{x^2+y^2+z^2}+\frac{18}{3\sqrt[3]{x^2y^2z^2}}\)
\(\ge\frac{9}{x^2+y^2+z^2}+\frac{36}{2\left(xy+yx+xz\right)}\ge9\left(\frac{1}{\left(x+y+z\right)^2}+\frac{2^2}{2\left(xy+yz=xz\right)}\right)\)
\(\ge\frac{81}{\left(x+y+z\right)^2=81}\)
Dấu = xảy ra khi x = y = z = 1/3
Áp dụng BĐT Cauchy Shwarz, ta có:
\(M=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)
\(\ge\frac{\left(1+1+1\right)^2}{1+1+1+xy+yz+xz}\)
\(\ge\frac{9}{3+x^2+y^2+z^2}\)
\(=\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1
\(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\)
\(\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)
Dấu = xảy ra khi \(x=y=z=1\)