Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2019}\)
Thay \(2019=x+y+z\)ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{z}{z\left(x+y+z\right)}-\frac{x+y+z}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-x-y-z}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)=-xy\left(x+y\right)\)
\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)+xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left[z\left(x+y+z\right)+xy\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left(xz+yz+z^2+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)
( mình chỉ xét 1 t/h, các t/h còn lại hoàn toàn tương tự )
TH1 : \(x+y=0\)
\(\Leftrightarrow x=-y\)(1)
Thay (1) vào A ta có :
\(A=\frac{1}{-y^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}\)
\(A=\frac{1}{z^{2019}}\)
Mặt khác : \(x+y+z=2019\)
Thay (1) vào đẳng thức trên ta được : \(-y+y+z=2019\)
\(\Leftrightarrow z=2019\)
Thay z vào A ta được : \(A=\frac{1}{2019^{2019}}\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)
Khai triển cả 2 vế ta được \(\left(\frac{1}{y}+\frac{1}{z}\right)^2+\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)
=>\(\hept{\begin{cases}\frac{1}{y}+\frac{1}{z}=0\\\frac{1}{x}+\frac{1}{z}=0\end{cases}}\)=>\(\frac{1}{x}=\frac{1}{y}\Rightarrow x=y\)
=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{z}=2\Rightarrow\frac{4}{x^2}+\frac{4}{xz}+\frac{1}{z^2}=4\)(1)
\(\frac{2}{xy}-\frac{1}{z^2}=\frac{2}{x^2}-\frac{1}{z^2}=4\)(2)
Từ (1) và (2) suy ra
\(\frac{2}{x^2}+\frac{4}{xz}+\frac{2}{z^2}=0\Rightarrow\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}=0\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)\(\Rightarrow\frac{1}{x}+\frac{1}{z}=0\Rightarrow x=y=-z\)
=> \(P=\left(x+2y+z\right)^{2019}=\left(2y\right)^{2019}\)
à thêm cái này nữa. Sorry viết thiếu
Vì x=y=-z\(\Rightarrow\frac{2}{x}-\frac{1}{x}=2\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}.\)
lúc đó \(P=\left(2.\frac{1}{2}\right)^{2019}=1\)
Ta có: \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right).\left[\left(x+y+z\right)^2-3.\left(x+y\right).z\right]-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2+2xy+2yz+2zx-3xz-3yz-3xy\right)=0\)
\(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2-xz-yz-xy\right)=0\)
+ \(x+y+z=0\)\(\Rightarrow\)\(C=\frac{x^{2019}+y^{2019}+z^{2019}}{0}\)( Loại )
+ \(x^2+y^2+z^2-xz-yz-xy=0\)
\(\Rightarrow2x^2+2y^2+2z^2-2xz-2yz-2xy=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\)\(x=y=z\)
\(\Rightarrow\)\(C=\frac{x^{2019}+x^{2019}+x^{2019}}{\left(x+x+x\right)^{2019}}=\frac{3.x^{2019}}{3^{2019}.x^{2019}}=\frac{1}{3^{2018}}\)
Vậy.......
Từ x3 + y3 + z3 = 3xyz
=> ( x + y + z )( x2 + y2 + z2 - xy - yz - xz ) = 0 ( phân tích như bạn kia )
Vì x + y + z ≠ 0
=> x2 + y2 + z2 - xy - yz - xz = 0
<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz = 0
<=> ( x - y )2 + ( y - z )2 + ( x - z )2 = 0
VT ≥ 0 ∀ x,y,z. Đẳng thức xảy ra <=> x=y=z
Khi đó \(C=\frac{x^{2019}+y^{2019}+z^{2019}}{\left(x+y+z\right)^{2019}}=\frac{3x^{2019}}{\left(3x\right)^{2019}}=\frac{3x^{2019}}{3^{2019}\cdot x^{2019}}=\frac{1}{3^{2018}}\)
Ta có : \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y=z\)
Khi đó : \(3x^{2018}=27^{673}=\left(3^3\right)^{673}=3^{2019}\)
\(\Leftrightarrow x^{2018}=3^{2018}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=z=3\\x=y=z=-3\end{cases}}\)
Đến đây tự tính A nha!
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\Rightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)
\(\Rightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)\(\Rightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\left(x+y\right)\left(\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)\(\Rightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)\(\Rightarrow\)\(x=-y\) hoặc \(y=-z\) hoặc \(z=-x\)
\(\Rightarrow A=0\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)=> \(\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
=> (x+y+z)(xy+yz+zx) = xyz
=> \(x^2y+xy^2+y^2z+yz^2+zx^2+z^2x+2xyz=0\)
=> (x+y)(y+z)(z+x) = 0
=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
TH1: x = -y
=> \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{\left(-y\right)^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{z^{2019}}\)
=> \(\frac{1}{x^{2019}+y^{2019}+z^{2019}}=\frac{1}{\left(-y\right)^{2019}+y^{2019}+z^{2019}}=\frac{1}{z^{2019}}\)
=> ĐPCM
Tương tự với TH2 và TH3
chắc câu này a đăng lên cho vui :vv
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2< =>\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=2^2=4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\left(\frac{2}{xy}-\frac{1}{z^2}\right)+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}+4=4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xy}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4-4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{zx}=0\)
\(< =>\left(\frac{1}{x^2}+\frac{2}{zx}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(< =>\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0< =>\frac{1}{x}=\frac{1}{y}=-\frac{1}{z}\)
\(< =>x=y=-z\)Thế vào giả thiết ta được : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(< =>\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2< =>\frac{-1}{z}+\frac{-1}{z}+\frac{1}{z}=2\)
\(< =>\frac{-1-1+1}{z}=2< =>2z=-1< =>z=-\frac{1}{2}\)
Suy ra \(x=y=-z=-\left(-\frac{1}{2}\right)=\frac{1}{2}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Nên \(P=\left(x+2y+z\right)^{2019}=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2019}=1^{2019}=1\)
\(\frac{3x-3}{6}=\frac{2y+10}{10}=\frac{5z-10}{15}=\frac{3x+2y-5z+17}{1}=\frac{3x+2y-5z+16+1}{1}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x-1}{2}=1\\\frac{y+5}{5}=1\\\frac{z-2}{3}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=0\\z=5\end{matrix}\right.\)
\(\Rightarrow P=3^{2019}+5^{2019}\)
Ta có \(3\equiv-1\left(mod4\right)\Rightarrow3^{2019}\equiv-1\left(mod4\right)\)
\(5\equiv1\left(mod4\right)\Rightarrow5^{2019}\equiv1\left(mod4\right)\)
\(\Rightarrow P\equiv\left(-1+1\right)\left(mod4\right)\Rightarrow P\equiv0\left(mod4\right)\Rightarrow P⋮4\)