Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: \(x+y+z=xyz\Rightarrow x(x+y+z)=x^2yz\)
\(\Rightarrow x(x+y+z)+yz=x^2yz+yz\)
\(\Rightarrow (x+y)(x+z)=yz(x^2+1)\)
Do đó: \(\frac{1+\sqrt{x^2+1}}{x}=\frac{1+\sqrt{\frac{(x+y)(x+z)}{yz}}}{x}\leq \frac{1+\frac{1}{2}(\frac{x+y}{y}+\frac{x+z}{z})}{x}\) theo BĐT AM-GM:
Thực hiện tương tự với các phân thức khác ta suy ra:
\(\text{VT}\leq \frac{1+\frac{1}{2}(\frac{x+y}{y}+\frac{x+z}{z})}{x}+\frac{1+\frac{1}{2}(\frac{y+z}{z}+\frac{y+x}{x})}{y}+\frac{1+\frac{1}{2}(\frac{z+x}{x}+\frac{z+y}{y})}{z}\)
\(\text{VT}\leq 3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3(xy+yz+xz)}{xyz}\)
Mà theo AM-GM:
\(\frac{3(xy+yz+xz)}{xyz}\leq \frac{(x+y+z)^2}{xyz}=\frac{(xyz)^2}{xyz}=xyz\)
Do đó: \(\text{VT}\leq xyz\)
Ta có đpcm.
Có BĐT phụ:
\(a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
Áp dụng
\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\)
\(\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{zx\left(z+x\right)+xyz}\)
\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\)
\(=\frac{1}{xyz}\)
Không mất tính tổng quát, giả sử \(x\le y\le z\)
Do \(xyz=1\)
\(x+y+z>1\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=xy+xz+yz\)
\(\Rightarrow x+y+z-\left(xy+xz+yz\right)>0\)
Xét:
\(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\left(x-1\right)\left(yz-y-z+1\right)=xyz-xy-xz+x-yz+y+z-1\)
\(=x+y+z-\left(xy+xz+yz\right)>0\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)>0\)
Do \(x\le y\le z\) ta chỉ có 2 trường hợp sau
TH1: \(\left\{{}\begin{matrix}x-1>0\\y-1>0\\z-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\y>1\\z>1\end{matrix}\right.\) \(\Rightarrow xyz>1\) (mâu thuẫn giả thiết)
TH2: \(\left\{{}\begin{matrix}x-1< 0\\y-1< 0\\z-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< 1\\y< 1\\z>1\end{matrix}\right.\)
Vậy trong 3 số có đúng 1 số lớn hơn 1
Lời giải:
Từ \(xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \((a,b,c)=\left(\frac{1}{x}; \frac{1}{y}; \frac{1}{z}\right)\Rightarrow a+b+c=1\)
BĐT cần chứng minh trở thành:
\(P=\frac{c^3}{(a+1)(b+1)}+\frac{a^3}{(b+1)(c+1)}+\frac{b^3}{(c+1)(a+1)}\geq \frac{1}{16}(*)\)
Thật vậy, áp dụng BĐT Cauchy ta có:
\(\frac{c^3}{(a+1)(b+1)}+\frac{a+1}{64}+\frac{b+1}{64}\geq 3\sqrt[3]{\frac{c^3}{64^2}}=\frac{3c}{16}\)
\(\frac{a^3}{(b+1)(c+1)}+\frac{b+1}{64}+\frac{c+1}{64}\geq 3\sqrt[3]{\frac{a^3}{64^2}}=\frac{3a}{16}\)
\(\frac{b^3}{(c+1)(a+1)}+\frac{c+1}{64}+\frac{a+1}{64}\geq 3\sqrt[3]{\frac{b^3}{64^2}}=\frac{3b}{16}\)
Cộng theo vế các BĐT trên và rút gọn :
\(\Rightarrow P+\frac{a+b+c+3}{32}\geq \frac{3(a+b+c)}{16}\)
\(\Leftrightarrow P+\frac{4}{32}\geq \frac{3}{16}\Leftrightarrow P\geq \frac{1}{16}\)
Vậy \((*)\) được chứng minh. Bài toán hoàn tất.
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=3\)
Ta có: \(\dfrac{1}{1+x}\ge2-\dfrac{1}{1+y}-\dfrac{1}{1+z}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}\)
\(=\dfrac{y}{1+y}+\dfrac{z}{1+z}=2\sqrt{\dfrac{yz}{\left(1+y\right)\left(1+z\right)}}\)
Tương tự vs 2 bđt còn lại: \(\left\{{}\begin{matrix}\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}}\\\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\end{matrix}\right.\)
Nhân các vế của 3 bđt trên => ĐPCM
Đặt \(\dfrac{1}{x+1}=a,\dfrac{1}{y+1}=b,\dfrac{1}{z+1}=c\Rightarrow a,b,c>0;a+b+c=1.\)
\(x=\dfrac{1}{a}-1\)
Cần chứng minh: \(\sum\sqrt{\dfrac{1}{a}-1}\le\dfrac{3}{2}\sqrt{\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)}\)
Hay \(\sum\sqrt{\dfrac{1}{a}-\dfrac{1}{a+b+c}}\le\dfrac{3}{2}\sqrt{\prod\left(\dfrac{1}{a}-\dfrac{1}{a+b+c}\right)}\)
Hay là \(\sum\sqrt{\dfrac{b+c}{a\left(a+b+c\right)}}\le\dfrac{3}{2}\sqrt{\prod\dfrac{\left(b+c\right)}{a\left(a+b+c\right)}}\)
Tương đương: \(\sum\sqrt{\dfrac{b+c}{a}}\le\dfrac{3}{2}\sqrt{\prod\dfrac{\left(b+c\right)}{a}}\)
\(\left[\sum\left(b+c\right)\left\{a+2\left(b+c\right)\right\}\right]\left[\sum\dfrac{1}{a\left\{a+2\left(b+c\right)\right\}}\right]\ge\left[\sum\sqrt{\dfrac{b+c}{a}}\right]^2\)
Từ đây cần chứng minh:
\(\dfrac{9}{4}\prod\dfrac{\left(b+c\right)}{a}\ge\left[\sum\left(b+c\right)\left\{a+2\left(b+c\right)\right\}\right]\left[\sum\dfrac{1}{a\left\{a+2\left(b+c\right)\right\}}\right]\)
Còn lại bạn tự làm hoặc không để tối rảnh mình làm.
Do hoc24.vn không cho cập nhật câu trả lời nữa nên mình đăng tiếp:
Thực hiện thay thế \(\left(a,b,c\right)\rightarrow\left(s-a',s-b',s-c'\right)\) với $a',b',c'$ là độ dài ba cạnh của một tam giác.
Đặt $\left\{ \begin{array}{l}a' + b' + c' = 2s\\a'b' + b'c' + c'a' = {s^2} + 4Rr + {r^2}\\a'b'c' = 4sRr\end{array} \right.$
Bất đẳng thức quy về:
$${\dfrac { \left( 4\,R-24\,r \right) {s}^{4}+r \left( 72\,{R}^{2}+41\,Rr+8\,{r}^{2} \right) {s}^{2}+2\,{r}^{2} \left( 4\,R+r \right) ^{3}}{r{s}^{2} \left( 4\,{s}^{2}+r \left( 8\,R+r \right) \right) }}\geqslant 0$$
\( \Leftrightarrow \left( {4{\mkern 1mu} R - 24{\mkern 1mu} r} \right){s^4} + r\left( {72{\mkern 1mu} {R^2} + 41{\mkern 1mu} Rr + 8{\mkern 1mu} {r^2}} \right){s^2} + 2{\mkern 1mu} {r^2}{\left( {4{\mkern 1mu} R + r} \right)^3} \geqslant 0\)
Hay là \({s^2}\left( {R - 2{\mkern 1mu} r} \right)\left( {9{\mkern 1mu} {r^2} + 4{\mkern 1mu} {s^2}} \right) + r\left[ {10{\mkern 1mu} {s^2}\left( {4{\mkern 1mu} {R^2} + 4{\mkern 1mu} Rr + 3{\mkern 1mu} {r^2} - {s^2}} \right) + \left( {8{\mkern 1mu} Rr + 2{\mkern 1mu} {r^2} + 2{\mkern 1mu} {s^2}} \right)\left( {16{\mkern 1mu} {R^2} + 8{\mkern 1mu} Rr + {r^2} - 3{\mkern 1mu} {s^2}} \right)} \right] \geqslant 0\)
Đây là điều hiển nhiên.
Ngoài ra phương pháp SOS, SS cũng có thể sử dụng ở đây.
Áp dụng BĐT AM-GM, Ta có
\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)
Mà \(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)
\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)
\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)
\(A=\Sigma\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\Sigma\dfrac{\sqrt{3\sqrt[3]{1.x^3.y^3}}}{xy}\) (bđt Cô-si cho 3 số)
=> \(A\ge\Sigma\dfrac{\sqrt{3xy}}{xy}=\Sigma\dfrac{\sqrt{3}}{\sqrt{xy}}\ge3\sqrt[3]{\dfrac{\sqrt{3}}{\sqrt{xy}}.\dfrac{\sqrt{3}}{\sqrt{yz}}.\dfrac{\sqrt{3}}{\sqrt{zx}}}=3\sqrt{3}\) (bđt Cô-si cho 3 số)
Dấu "=" xảy ra <=> x = y = z = 1
Áp dụng BĐT \(AM-GM\) ta có :
\(\left\{{}\begin{matrix}x^2+y^2\ge2xy\\y^2+3\ge2y+2\end{matrix}\right.\Rightarrow x^2+2y^2+3\ge2\left(xy+y+1\right)\Rightarrow\dfrac{1}{x^2+2y^2+3}\le\dfrac{1}{2\left(xy+y+1\right)}\)
Tương tự : \(\dfrac{1}{y^2+2z^2+3}\le\dfrac{1}{2\left(yz+z+1\right)}\)
\(\dfrac{1}{z^2+2x^2+3}\le\dfrac{1}{2\left(zx+x+1\right)}\)
Cộng từng vế BĐT ta được :
\(\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\le\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{1}{yz+z+1}+\dfrac{1}{zx+x+1}\right)=\dfrac{1}{2}\left(\dfrac{xyz}{xy+y+xyz}+\dfrac{x}{xyz+zx+x}+\dfrac{1}{zx+x+1}\right)=\dfrac{1}{2}\left(\dfrac{xz+x+1}{xy+x+1}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\)
do x,y,z là các số dương nên
\(x^2-xy+y^2\ge xy\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)
tương tự ta cũng có : \(y^3+z^3\ge yz\left(y+z\right)\)
\(z^3+x^3\ge zx\left(z+x\right)\)
\(\Rightarrow\Sigma\dfrac{1}{x^3+y^3+xyz}\le\Sigma\dfrac{1}{xy\left(x+y+z\right)}=\dfrac{1}{x+y+z}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\)
\(=\dfrac{1}{x+y+z}\left(\dfrac{x+y+z}{xyz}\right)=\dfrac{1}{xyz}\left(đpcm\right)\)