\(A=\frac{x^2+y^2+z^2}{7\left(x+y+z...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)

\(\Leftrightarrow F=E\)

Từ đó ta có:

\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)

\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)

\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)

\(\Rightarrow F\ge\frac{1}{4}\)

Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)

25 tháng 3 2017

Bạn ơi, cho mình hỏi này

Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\)  và sao có  \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)  

Giải đáp tận tình hộ mình nhé.

23 tháng 5 2015

\(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-zx}{\left(y+z\right)\left(y+x\right)}+\frac{z^2-xy}{\left(z+x\right)\left(z+y\right)}=\frac{\left(x^2-yz\right)\left(y+z\right)+\left(y^2-zx\right)\left(x+z\right)+\left(z^2-xy\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

=\(\frac{x^2y+x^2z+xy^2+y^2z+xz^2+yz^2-x^2y-x^2z-xy^2-y^2z-xz^2-yz^2}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}=\frac{0}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}=0\)

                   lik.e nhé!

3 tháng 6 2015

Đặt a = y + z; b = z+ x; c = x+ y (a;b;c > 0)

=> x+ y + z = (a+b+c)/2

=> x= (a+b+c)/2 - a = (b+c- a)/2

     y = (a+b+c)/2 - b = (a+c-b)/2; z = (a+b - c)/ 2

Khi đó \(P=\frac{b+c-a}{2a}+\frac{a+c-b}{2b}+\frac{a+b-c}{2c}=\frac{1}{2}.\left(\frac{b}{a}+\frac{c}{a}-1+\frac{a}{b}+\frac{c}{b}-1+\frac{a}{c}+\frac{b}{c}-1\right)\)

=> \(P=\frac{b+c-a}{2a}+\frac{a+c-b}{2b}+\frac{a+b-c}{2c}=\frac{1}{2}.\left(\left(\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)-3\right)\right)\)

AD BĐT Cô - si có: \(\frac{a}{b}+\frac{b}{a}\ge2;\frac{b}{c}+\frac{c}{b}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\)

=> \(P\ge\frac{1}{2}.\left(2+2+2-3\right)=\frac{3}{2}\)=> Min P = 3/2

Dấu "=" khi a = b = c<=> x = y = z

2 tháng 5 2020

Áp dụng Cauchy - Schwarz và AM-GM :

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)

\(=\frac{x^2}{xy+xz}+\frac{y^2}{yz+xy}+\frac{z^2}{xz+yz}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\)

\(\ge\frac{\left(x+y+z\right)^2}{\frac{2\left(x+y+z\right)^2}{3}}=\frac{3}{2}\)

Đẳng thức xảy ra tại x=y=z

11 tháng 4 2019

a, P = y- x/xy

11 tháng 10 2020

Bài 1:

\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y-z\right)^2\)

\(=x^2\)

Bài 2:

đk: \(x\ne\left\{0;-1;-2;-3;-4;-5\right\}\)

Xét BT trái ta có:

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\)

\(=\frac{1}{x}-\frac{1}{x+5}\)

\(=\frac{5}{x\left(x+5\right)}=\frac{5}{x^2+5x}\)

GT của biểu thức lớn sẽ là: \(\frac{5}{x^2+5x}\cdot\frac{x^2+5x}{5}=1\) không phụ thuộc vào biến

=> đpcm

11 tháng 10 2020

Bài 1.

( x - y + z ) + ( z - y )2 + ( x - y + z )( 2y - 2z )

= ( x - y + z ) - 2( x - y + z )( z - y ) + ( z - y )2

= [ ( x - y + z ) - ( z - y ) ]2 

= ( x - y + z - z + y )2

= x2

Bài 2. ĐKXĐ tự ghi nhé :))

\(\left(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\right)\times\left(\frac{x^2+5x}{5}\right)\)

\(=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)

\(=\left(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)

\(=\left(\frac{1}{x}-\frac{1}{x+5}\right)\times\frac{x\left(x+5\right)}{5}\)

\(=\left(\frac{x+5}{x\left(x+5\right)}-\frac{x}{\left(x+5\right)}\right)\times\frac{x\left(x+5\right)}{5}\)

\(=\frac{x+5-x}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}\)

\(=\frac{5}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}=1\)

=> đpcm

Giờ bạn cần bài này nữa không 

1.   Đặt A = x2+y2+z2

             B = xy+yz+xz

             C = 1/x + 1/y + 1/z

Lại có (x+y+z)2=9

             A + 2B = 9

  Dễ chứng minh A>=B 

      Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)

Vì x+y+z=3 => (x+y+z) /3 =1 

    C = (x+y+z) /3x  +  (x+y+x) /3y + (x+y+z)/3z

C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x) 

Áp dụng bất đẳng thức (a/b+b/a) >=2

=> C >=3 ( khi và chỉ khi x=y=z=1)

P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1

Vậy ...........

Câu 2 chưa ra thông cảm 

16 tháng 5 2020

\(A\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{3}\ge\frac{\left(1+\frac{9}{x+y+z}\right)^2}{3}=\frac{10^2}{3}=\frac{100}{3}\)

ĐTXR ⇔ x = y = z = (x+y+z)/3  = 1/3

10 tháng 5 2019

Em có cách này nhưng không chắc

Ta sẽ c/m BĐT phụ sau:\(2x+\frac{1}{x}\ge\frac{x^2}{2}+\frac{5}{2}\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{2x}\le0\) (đúng) (ta chuyển hết VT sang vế phải rồi qui đồng lên)

Thiết lập hai BĐT tương tự và cộng theo vế ta tìm được Min

10 tháng 5 2019

Nói thêm: Do x, y, z dương và \(x^2+y^2+z^2=3\Rightarrow0< x;y;z< \sqrt{3}\) (từ đây ta mới chứng minh được BĐT phụ đúng.