\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

\(x+y+z=2018\)\(\Rightarrow\)\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2018}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\\ \Leftrightarrow x^2y+xy^2+xyz+xyz+y^2z+\\ yz^2+zx^2+xyz+z^2x-xyz=0\)

\(\Leftrightarrow x^2y+xy^2+xyz+xyz+\\ y^2z+yz^2+zx^2+z^2x=0\)

\(\Leftrightarrow xy\left(x+y\right)+yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y\left(x+z\right)+z\left(x+z\right)\right)=0\\ \Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

suy ra x+y=0 hoặc y+z=0 hoặc x+z=0

hay x=-y hoặc y=-z hoặc x=-z

thay vào D ta tính dc kq

12 tháng 1 2018

Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{xy+yz+xz}{xyz}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+3xyz-xyz=0\)

\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz=0\)

\(\Leftrightarrow x^2y+xy^2+x^2z+xyz+y^2z+yz^2+xz^2+xyz=0\)

\(\Leftrightarrow x\left(xy+y^2+xz+yz\right)+z\left(y^2+yz+xz+xy\right)=0\)

\(\Leftrightarrow x\left[y\left(x+y\right)+z\left(x+y\right)\right]+z\left[y\left(y+z\right)+x\left(y+z\right)\right]=0\)

\(\Leftrightarrow x\left(x+y\right)\left(y+z\right)+z\left(y+z\right)\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

* x = -y

\(\dfrac{1}{x^{2007}}+\dfrac{1}{y^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{x^{2007}}-\dfrac{1}{x^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{z^{2007}}\)(*)

\(\dfrac{1}{x^{2007}+y^{2007}+z^{2007}}=\dfrac{1}{x^{2007}-x^{2007}+z^{2007}}=\dfrac{1}{z^{2007}}\)(*)

Từ (*) và (**) \(\Rightarrow\) đpcm

Tương tự xét y = -z và z = -x

Vậy nếu x, y, z khác 0 và x + y +z khác 0 thì \(\dfrac{1}{x^{2007}}+\dfrac{1}{y^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{x^{2007}+y^{2007}+z^{2007}}\).

19 tháng 12 2017

Chào bạn

bạn nhân chéo lên rồi tách ra thì bạn sẽ có

1/x+1/y+1/z=1/x+y+z tương đương với (x+y)(y+z)(x+z)=0

Đến đây thì dễ rồi

19 tháng 12 2017

Bạn có thể giải rõ ra được không

18 tháng 6 2018

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{xy}{z}+\dfrac{yz}{x}\)\(2\sqrt{\dfrac{xy}{z}.\dfrac{yz}{x}}=2\sqrt{y^2}=2y\left(1\right)\)

\(\dfrac{yz}{x}+\dfrac{xz}{y}\)\(2\sqrt{\dfrac{yz}{x}.\dfrac{xz}{y}}=2\sqrt{z^2}=2z\left(2\right)\)

\(\dfrac{xy}{z}+\dfrac{xz}{y}\)\(2\sqrt{\dfrac{xy}{z}.\dfrac{xz}{y}}=2\sqrt{x^2}=2x\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3) , ta được :

\(2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\right)\)\(2\left(x+y+z\right)\)

\(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\)\(x+y+z=2019\)

\(P_{Min}=2019\)\(x=y=z=673\)

18 tháng 6 2018

Dụng cosi để tìm GTNN hoặc GTLN nha

13 tháng 10 2018

\(A=\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}\) (đã sửa đề)

\(A+3=\dfrac{x+y+z}{z}+\dfrac{x+y+z}{x}+\dfrac{x+y+z}{y}\)

\(A+3=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=0\)

\(A=-3\)

15 tháng 10 2018

thank you haha

3 tháng 5 2017

Do \(x+\dfrac{1}{y}=y+\dfrac{1}{z}=z+\dfrac{1}{x}\)

=> \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=y+\dfrac{1}{z}\Leftrightarrow x-y=\dfrac{1}{z}-\dfrac{1}{y}\Leftrightarrow x-y=\dfrac{y-z}{yz}\\y+\dfrac{1}{z}=z+\dfrac{1}{x}\Leftrightarrow y-z=\dfrac{1}{x}-\dfrac{1}{z}\Leftrightarrow y-z=\dfrac{z-x}{xz}\\z+\dfrac{1}{x}=x+\dfrac{1}{y}\Leftrightarrow z-x=\dfrac{1}{y}-\dfrac{1}{x}\Leftrightarrow z-x=\dfrac{x-y}{xy}\end{matrix}\right.\)

=> \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=\dfrac{\left(y-z\right)\left(z-x\right)\left(x-y\right)}{x^2y^2z^2}\)

<=> \(\left(x-y\right)\left(y-z\right)\left(z-x\right)x^2y^2z^2=\left(y-z\right)\left(z-x\right)\left(x-y\right)\)

<=> \(\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x^2y^2z^2-1\right)=0\)

=> \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\) hoặc \(x^2y^2z^2-1=0\)

=> x=y=z hoặc xyz=1 hoặc xyz=-1