\(\frac{1}{x^3+y^3}+\frac{1}{xy}\ge4+2\sqrt{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 3 2019

\(P=\frac{1}{\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=4+2\sqrt{3}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{3+\sqrt{6\sqrt{3}-9}}{6}\\y=\frac{3-\sqrt{6\sqrt{3}-9}}{6}\end{matrix}\right.\) và hoán vị

NV
19 tháng 3 2019

Cụ thể hơn:

\(\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}\)

\(=\frac{1^2}{1-3xy}+\frac{\left(\sqrt{3}\right)^2}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}\)

Dấu "=" xảy ra khi

\(\frac{1-3xy}{1}=\frac{3xy}{\sqrt{3}}\Rightarrow1-3xy=\sqrt{3}xy\)

23 tháng 8 2017

Tìm x : 

a) ( x - 15 ) . 35 = 0 

               x - 15 = 0 : 35

               x - 15 = 0  

                      x = 0 + 15

                      x = 15

b) 32 ( x - 10 ) = 32 

              x - 10 = 32 : 32

              x - 10 = 1

                     x = 1 + 10

                     x = 11

23 tháng 8 2017

\(\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{x^2-xy+y^2}+\frac{1}{x}+\frac{1}{y}=1+\frac{3xy}{x^3+y^3}+1+\frac{x}{y}+1+\frac{y}{x}\ge5\)

15 tháng 5 2020

Bạn kiểm tra lại đề

\(z=max\left\{x;y;z\right\}\)hay \(z=min\left\{x;y;z\right\}\)

3 tháng 6 2019

P=1/(x+y)(x^2-xy+y^2)+1/xy

P=1/(x^2-xy+y^2)+1/xy ( vĩ+y=1)

P=1/(x^2-xy+y^2)+3/xy

Đến đây áp dụng bất đẳng thức Svac có

P>=(√3+1)^2/(x+y)^2

P>=(√3+1)^2 (vì x+y=1)

hay P>=4+2√3(đpcm)

17 tháng 7 2019

Bài 1:

Theo BĐT AM-GM có :$(x+y+1)(x^2+y^2)+\dfrac{4}{x+y}\geq (x+y+1).2xy+\dfrac{4}{x+y}=2(x+y+1)+\dfrac{4}{x+y}=(x+y)+(x+y)+\dfrac{4}{x+y}+2\geq 2\sqrt{xy}+2\sqrt{(x+y).\dfrac{4}{x+y}}+2=2+4+2=8$(đpcm)

Dấu \(=\) xảy ra khi \(x=y, xy=1\)\(x+y=2\) hay \(x=y=1\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 1:

Áp dụng BĐT Cô-si cho các số dương:

\(x^2+y^2\geq 2xy=2\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 2(x+y+1)+\frac{4}{x+y}(1)\)

Tiếp tục áp dụng BĐT Cô-si:

\(2(x+y+1)+\frac{4}{x+y}=(x+y+2)+[(x+y)+\frac{4}{x+y}]\)

\(\geq (2\sqrt{xy}+2)+2\sqrt{(x+y).\frac{4}{x+y}}=(2+2)+4=8(2)\)

Từ \((1);(2)\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 8\) (đpcm)

Dấu "=" xảy ra khi $x=y=1$

19 tháng 5 2017

1/ Sửa đề:   \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\)   \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)

\(\Leftrightarrow\)   \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

Với mọi x, y, z ta luôn có:   \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\)   \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\)   \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)

\(\Rightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Do đó dấu "=" xảy ra    \(\Leftrightarrow\)    \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\)   \(\Leftrightarrow\)    \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)    \(\Leftrightarrow\)    x = y = z

3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh

\(a+b\ge2\sqrt{ab}\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\)   \(a^2+b^2+2ab-4ab\ge0\)    \(\Leftrightarrow\)    \(a^2-2ab+b^2\ge0\)   \(\Leftrightarrow\)   \(\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi a = b

2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:

\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\)   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

13 tháng 10 2016

1)đề thiếu

2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)

Đpcm

3)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Đpcm

13 tháng 10 2016

P OI cai nay dung bat dang thuc co si do

14 tháng 10 2016

\(P=\frac{1}{x^3+y^3}+\frac{1}{xy}\)

Ta có:

\(x+y=1\Rightarrow\left(x+y\right)^3=1\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Rightarrow x^3+y^3+3xy=1\)

\(\Rightarrow P=\frac{x^3+y^3+3xy}{x^3+y^3}+\frac{x^3+y^3+3xy}{xy}\)\(=4+\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\left(1\right)\)

Áp dụng Bđt Cô si ta có:

\(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\ge2\sqrt{\frac{3xy}{x^3+y^3}\cdot\frac{x^3+y^3}{xy}}=2\sqrt{3}\)

\(\Rightarrow P\ge4+2\sqrt{3}\)(Đpcm)

Dấu = khi \(\hept{\begin{cases}x+y=1\\x^3+y^3=\sqrt{3xy}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=1\\1-3xy=\sqrt{3xy}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=1\\3\sqrt{xy}=\frac{-1+\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{6-2\sqrt{5}}{12}\end{cases}}\)

\(\Leftrightarrow x^2-x+\frac{6-2\sqrt{5}}{12}=0\)\(\Leftrightarrow x,y=\frac{1\pm\sqrt{\frac{2\sqrt{5}-3}{3}}}{2}\)

13 tháng 10 2016

chiu

tk nhe

xin do

bye

10 tháng 7 2019

\(3,\)Áp dụng bđt Mincopski \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)hai lần có

\(VT\ge\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{yz}+\sqrt{zx}\right)^2}+\sqrt{z+xy}\)

       \(\ge\sqrt{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)

       \(=\sqrt{x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)

       \(=\sqrt{1+2t+t^2}\left(t=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
        \(=\sqrt{\left(t+1\right)^2}=t+1=VP\left(Đpcm\right)\)

10 tháng 7 2019

\(2,\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{a}.\sqrt{b}}}=\sqrt{\sqrt{ab}}\left(đpcm\right)\)

30 tháng 8 2017

Đầu tiên CM BDT :

\(1+x^3+y^3\ge xy"x+y+z"\)

\(\Leftrightarrow x^3+y^3\ge xy"x+y"\)" do \(xyz=1\)"

\(\Leftrightarrow"x+y""x^2+y^2-xy"-xy"x+y"\ge0\)

\(\Leftrightarrow"x+y""x-y"^2\ge0\)

BDT luôn đúng theo gt 

\(\Rightarrow\sqrt{"1+x^3+y^3"}\ge\sqrt{xy"x+y+z"}\)

\(\Rightarrow\sqrt{\frac{"1+x^3+y^3}{xy}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)

Tương tự

\(\Rightarrow\sqrt{\frac{"1+z^3+y^3}{zy}}\ge\sqrt{\frac{"x+y+z"}{zy}}\)

\(\sqrt{\frac{"1+x^3+y^3"}{xz}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)

\(\Rightarrow VT\ge\sqrt{"x+y+z"}.\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)

AD BDT Cauchy cho các số > 0

\(x+y+z\ge3\)\(\sqrt[3]{xyz}=3\)

\(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\ge\frac{3}{\sqrt[3]{xyz}}=3\)

\(\Rightarrow VT\ge\sqrt{3}.3=3\sqrt{3}=VP\) 

\(\Rightarrow VT\ge VP\)

\(\Rightarrow DPCM\)

Vậy Dấu \(= khi x=y=z=1\)

P/s: Thay dấu noặc kép thành ngọc đơn nha, Ko chắc đâu