\(x^2+y^2+6xy\le8tìmminA=\frac{1}{x}+\frac{1}{y}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

Áp dụng BĐT Cô-si ta có:

\(x^2+y^2+6xy\ge2\sqrt{x^2y^2}+6xy=8xy\Rightarrow8\ge8xy\Rightarrow xy\le1\)

Áp dụng BĐT Cô-si ta có:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}=2}\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x^2+y^2+6xy=8\end{cases}\Leftrightarrow x=y=1}\)

Vậy \(A_{min}=2\)khi \(x=y=1\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

7 tháng 6 2021

Vì xy + yz + zx = 1 ta có : 

\(\frac{x-y}{z^2+1}+\frac{y-z}{x^2+1}+\frac{z-x}{y^2+1}=\frac{x-y}{z^2+xy+yz+zx}+\frac{y-z}{x^2+xy+yz+zx}+\frac{z-x}{y^2+xy+yz+zx}\)

\(=\frac{x-y}{\left(y+z\right)\left(z+x\right)}+\frac{y-z}{\left(x+y\right)\left(x+z\right)}+\frac{z-x}{\left(y+z\right)\left(x+y\right)}\)

\(=\frac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(x+z\right)\left(z-x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{0}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(ĐPCM) 

22 tháng 4 2017

Áp dụng BĐT AM-GM ta có: 

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\)

\(=\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}=\frac{\left(x+y+\frac{x+y}{xy}\right)^2}{2}\)

Lại có: \(1=x+y\ge2\sqrt{xy}\Rightarrow1\ge4xy\Rightarrow\frac{1}{xy}\ge4\)

Khi đó \(A\ge\frac{\left(1+\frac{1}{xy}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

2 tháng 5 2020

\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{4.\frac{\left(x+y\right)^2}{4}}\)

\(=4+2+5=11\)

Dấu "=" xảy ra khi x = y = \(\frac{1}{2}\)

4 tháng 5 2020

số gạo còn lại là 

3/3-1/3=2/3

dáp số 2/3

28 tháng 12 2016

P=20/(xy)^2

nhỏ nhất khi !xy! x,y>0=> xy lớn nhất

x^2+y^2>=2xy=> xy<=10 đẳng thức khi x=y=\(\sqrt{10}\)

Pmin=20/10=1/5 

24 tháng 3 2018

P=20/(xy)^2

nhỏ nhất khi !xy! x,y>0=> xy lớn nhất

x^2+y^2>=2xy=> xy<=10 đẳng thức khi x=y=\(\sqrt[]{10}\)

Pmin=20/10=1/5

:3

Mik ms làm lần đâu sai thì thôi nha :

 Để P nhỏ nhất thì 

 \(y^2+z^2+z^2+x^2+y^2+x^2\)

\(=\left(y^2+x^2+z^2\right)+z^2+x^2+y^2\)

\(=1+x^2+y^2+z^2\ge1\)

4 tháng 8 2016

b làm rõ hơn đc ko

3 tháng 5 2018

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)

20 tháng 7 2017

thay x+y=2 vào C có \(C=\frac{1}{x^2+y^2}+\frac{2}{2}=\frac{1}{x^2+y^2}+1\)    (*)

ta có: \(x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=4-2xy\)(1)

thay (1) vào (*) có  \(C=\frac{1}{4-2xy}+1\)  (**)

mặt khác áp dụng BĐT cô -si ta có:\(x^2+y^2\ge2xy\Leftrightarrow4-2xy\ge2xy\Leftrightarrow xy\le1\) (2)

\(4-2xy\le2\Leftrightarrow\frac{1}{4-2xy}\ge\frac{1}{2}\Leftrightarrow\frac{1}{4-2xy}+1\ge\frac{3}{2}\)

\(\Leftrightarrow C=\frac{1}{x^2+y^2}+\frac{1}{x+y}\ge\frac{3}{2}\)

vậy GTNN của C=3 phần 2 <=>x=y=1

20 tháng 7 2017

Bạn Trần Đình Thuyên giải sai rồi!

12 tháng 12 2017

ta có \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}=6\)

Mà \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}\ge\frac{36}{x+2y+3z}\Rightarrow6\ge\frac{36}{x+2y+3z}\Rightarrow x+2y+3z\ge6\)

MÀ \(y^2+1\ge2y;z^3+1+1\ge3z\)

=> A+3\(\ge\left(x+2y+3z\right)=6\) => A>=3

dấu = xảy ra <=> x=y=z