Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)⇔x2+1x-3x+3=0
⇔x(x+1)-3(x+1)=0
⇔(x+1)(x-3)=0
⇔x+1=0 hoặc x-3=0
⇔x=-1 hoặc x=3
4)⇔x(1+5x)=0
⇔x=0 hoặc 1+5x=0
⇔x=0 hoặc 5x=-1
⇔x=0 hoặc x=-0.2
a) 2x (x-5) -(x2-10x +25)=0
\(\Leftrightarrow\)2x(x-5)-(x-5)2=0
\(\Leftrightarrow\)(x-5)(2x-x+5)=0
\(\Leftrightarrow\)(x-5)(x+5)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
b) x2 - 9 +3x(x+3) = 0
\(\Leftrightarrow\)(x2 - 9) +3x(x+3) =0
\(\Leftrightarrow\)(x-3)(x+3)+3x(x+3)=0
\(\Leftrightarrow\)(x+3)(x-3+3x)=0
\(\Leftrightarrow\)(x+3)(4x-3)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+3=0\\4x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\4x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{3}{4}\end{matrix}\right.\)
c) x3 - 16x = 0
\(\Leftrightarrow\)x(x2-16)=0
\(\Leftrightarrow\)x(x-4)(x+4)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) (2x+3)(x-2) - (x2 -4x+4) = 0
\(\Leftrightarrow\)(2x+3)(x-2) -(x-2)2=0
\(\Leftrightarrow\)(x-2)(2x+3-x+2)=0
\(\Leftrightarrow\)(x-2)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
e) 9x2 -(x2 -2x +1)=0
\(\Leftrightarrow\)(3x)2-(x-1)2=0
\(\Leftrightarrow\)(3x-x+1)(3x+x-1)=0
\(\Leftrightarrow\)(2x+1)(4x-1)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=0\\4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=-1\\4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{4}\end{matrix}\right.\)
f)x3-4x2 -9x +36 = 0
\(\Leftrightarrow\)(x3-9x)-(4x2-36)=0
\(\Leftrightarrow\)x(x2-9)-4(x2-9)=0
\(\Leftrightarrow\)(x-4)(x2-9)=0
\(\Leftrightarrow\)(x-4)(x-3)(x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)
g) 3x - 6 = (x-1).(x-2)
\(\Leftrightarrow\)3(x-2)=(x-1)(x-2)
\(\Leftrightarrow\)x-1=3
\(\Leftrightarrow\)x=4
i) (x-2).(x+2) +(2x+1)2 =-5x.(x-3) =5 (?? đề sao vậy ??)
k) x2 -1 = (x-1).(2x+3)
\(\Leftrightarrow\)(x-1)(x+1)=(x-1)(2x+3)
\(\Leftrightarrow\)x+1=2x+3
\(\Leftrightarrow\)x-2x=3-1
\(\Leftrightarrow\)-x=2
\(\Leftrightarrow\)x=-2
l) (2x-1)2 +(x+3).(x-3) -5x(x-2)=6
\(\Leftrightarrow\)4x2-4x+1+x2-9-5x2+10x=6
\(\Leftrightarrow\)6x-8=6
\(\Leftrightarrow\)6x=14
\(\Leftrightarrow\)x=\(\frac{7}{3}\)
\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)
\(TH1:3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)
\(TH2:x+6=0\Leftrightarrow x=-6\)
\(TH3:x^2+5=0\Leftrightarrow x^2=5\Leftrightarrow x=\sqrt{5}\)( ns vô nghiệm cx ko sai nha )
\(\left(2x+5\right)^2=\left(3x-1\right)^2\)
\(2x+5=3x-1\)
\(2x-3x=-1-5\)
\(-1x=-6\)
\(x=6\)
1) Ta có: \(\left(x^2-4x+4\right)\left(x^2+4x+4\right)-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^2\cdot\left(x+2\right)^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\right]^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x^2-4-7x-4\right)\left(x^2-4+7x+4\right)=0\)
\(\Leftrightarrow\left(x^2-7x-8\right)\left(x^2+7x\right)=0\)
\(\Leftrightarrow x\left(x+7\right)\left(x^2-8x+x-8\right)=0\)
\(\Leftrightarrow x\left(x+7\right)\left[x\left(x-8\right)+\left(x-8\right)\right]=0\)
\(\Leftrightarrow x\left(x+7\right)\left(x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+7=0\\x-8=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\\x=8\\x=-1\end{matrix}\right.\)
Vậy: S={0;-7;8;-1}
2) Ta có: \(x^3-8x^2+17x-10=0\)
\(\Leftrightarrow x^3-2x^2-6x^2+12x+5x-10=0\)
\(\Leftrightarrow x^2\left(x-2\right)-6x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-6x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-x-5x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=5\end{matrix}\right.\)
Vậy: S={2;1;5}
3) Ta có: \(2x^3-5x^2-x+6=0\)
\(\Leftrightarrow2x^3-4x^2-x^2+2x-3x+6=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+2x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(2x-3\right)+\left(2x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\2x=3\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{3}{2}\\x=-1\end{matrix}\right.\)
Vậy: \(S=\left\{2;\frac{3}{2};-1\right\}\)
4) Ta có: \(4x^4-4x^2-3=0\)
\(\Leftrightarrow4x^4-6x^2+2x^2-3=0\)
\(\Leftrightarrow2x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\)
\(\Leftrightarrow\left(2x^2-3\right)\left(2x^2+1\right)=0\)
mà \(2x^2+1>0\forall x\in R\)
nên \(2x^2-3=0\)
\(\Leftrightarrow2x^2=3\)
\(\Leftrightarrow x^2=\frac{3}{2}\)
hay \(x=\pm\sqrt{\frac{3}{2}}\)
Vậy: \(S=\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}}\right\}\)
\(\text{a) (5x+2)(x-7)=0}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)
Vậy ...
#Thảo Vy#
1,=\(x^2-3x-2x^2+6x=-x^2+3x\)
2,=\(3x^2-x-5+15x=3x^2+14x-5\)
3,=\(5x+15-6x^2-6x=-6x^2-x+15\)
4,=\(4x^2+12x-x-3=4x^2+11x-3\)
5: =>(x+5)^3=0
=>x+5=0
=>x=-5
6: =>(2x-3)^2=0
=>2x-3=0
=>x=3/2
7: =>(x-6)(x-10)=0
=>x=10 hoặc x=6
8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)
=>(x-4)^3=0
=>x-4=0
=>x=4
Sorry Ngân Chu, đoạn chia hết cho 120 thì thêm cả chia hết cho 2 nữa, nên nhân vào mới ra 120 nhé!!
Bài 1:
a, (n + 3)2 - (n - 1)2
= (n + 3 - n + 1)(n + 3 + n - 1)
= 4(2n - 2)
= 8(n - 1)
Vì 8 \(⋮\) 8 nên 8(n - 1) \(⋮\) 8 với n \(\in\) Z
b, n5 - 5n3 + 4n
= n(n4 - 5n2 + 4)
= n(n4 - n2 - 4n2 + 4)
= n[n2(n2 - 1) - 4(n2 - 1)]
= n(n2 - 1)(n2 - 4)
= n(n - 1)(n + 1)(n - 2)(n + 2)
= (n - 2)(n - 1)n(n + 1)(n + 2)
Vì (n - 2)(n - 1)n(n + 1)(n + 2) là tích của 5 số nguyên liên tiếp nên chia hết cho 3, 5, 8
Mà 3 x 5 x 8 = 120
\(\Rightarrow\) (n - 2)(n - 1)n(n + 1)(n + 2) \(⋮\) 120 hay n5 - 5n3 + 4n \(⋮\) 120 với n \(\in\) Z
Bài 2:
a, 4x(x + 1) = 8(x + 1)
\(\Leftrightarrow\) 4x(x + 1) - 8(x + 1) = 0
\(\Leftrightarrow\) (x + 1)(4x - 8) = 0
\(\Leftrightarrow\) 4(x + 1)(x - 2) = 0
\(\Leftrightarrow\) (x + 1)(x - 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy S = {-1; 2}
b, x2 - 6x + 8 = 0
\(\Leftrightarrow\) x2 - 6x + 9 - 1 = 0
\(\Leftrightarrow\) (x - 3)2 - 1 = 0
\(\Leftrightarrow\) (x - 3 - 1)(x - 3 + 1) = 0
\(\Leftrightarrow\) (x - 4)(x - 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy S = {4; 2}
c, x3 + x2 + x + 1 = 0
\(\Leftrightarrow\) x2(x + 1) + (x + 1) = 0
\(\Leftrightarrow\) (x + 1)(x2 + 1) = 0
Vì x2 + 1 > 0 với mọi x
\(\Rightarrow\) x + 1 = 0
\(\Leftrightarrow\) x = -1
Vậy S = {-1}
d, x3 - 7x - 6 = 0
\(\Leftrightarrow\) x3 - x - 6x - 6 = 0
\(\Leftrightarrow\) (x3 - x) - (6x + 6) = 0
\(\Leftrightarrow\) x(x2 - 1) - 6(x + 1) = 0
\(\Leftrightarrow\) x(x - 1)(x + 1) - 6(x + 1) = 0
\(\Leftrightarrow\) (x + 1)[x(x - 1) - 6] = 0
\(\Leftrightarrow\) (x + 1)(x2 - x - 6) = 0
\(\Leftrightarrow\) (x + 1)(x2 - 3x + 2x - 6) = 0
\(\Leftrightarrow\) (x + 1)[x(x - 3) + 2(x - 3)] = 0
\(\Leftrightarrow\) (x + 1)(x - 3)(x + 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\\x=-2\end{matrix}\right.\)
Vậy S = {-1; 3; -2}
Câu e hình như bạn viết nhầm 2 lần số 17x thì phải, mình sửa lại rồi!!
e, 3x3 - 7x2 + 17x - 5 = 0
\(\Leftrightarrow\) 3x3 - x2 - 6x2 + 2x + 15x - 5 = 0
\(\Leftrightarrow\) (3x3 - x2) + (-6x2 + 2x) + (15x - 5) = 0
\(\Leftrightarrow\) x2(3x - 1) - 2x(3x - 1) + 5(3x - 1) = 0
\(\Leftrightarrow\) (3x - 1)(x2 - 2x + 5) = 0
\(\Leftrightarrow\) (3x - 1)(x2 - 2x + \(\frac{1}{4}\) + \(\frac{19}{4}\)) = 0
\(\Leftrightarrow\) (3x - 1)[(x - \(\frac{1}{2}\))2 + \(\frac{19}{4}\)] = 0
Vì (x - \(\frac{1}{2}\))2 + \(\frac{19}{4}\) > 0 với mọi x nên
\(\Rightarrow\) 3x - 1 = 0
\(\Leftrightarrow\) x = \(\frac{1}{3}\)
Vậy S = {\(\frac{1}{3}\)}
Bài 3:
Hình như phần a thì 16(1 - x) mới đúng chứ!!
a, x2(x - 1) + 16(1 - x)
= x2(x - 1) - 16(x - 1)
= (x - 1)(x2 - 16)
= (x - 1)(x - 4)(x + 4)
Câu b, d, g mình chịu, hình như đề sai thì phải, mình ko nghĩ ra được!!
c, x3 - 3x2 - 3x + 1
= (x3 + 1) - (3x2 + 3x)
= (x + 1)(x2 + x + 1) - 3x(x + 1)
= (x + 1)(x2 + x + 1 - 3x)
= (x + 1)(x2 - 2x + 1)
= (x + 1)(x - 1)(x - 1)
e, x4 - 13x2 + 36
= x4 - 4x2 - 9x2 + 36
= x2(x2 - 4) - 9(x2 - 4)
= (x2 - 4)(x2 - 9)
= (x - 2)(x + 2)(x - 3)(x + 3)
f, (x2 + x)2 + 4x2 + 4x - 12
= (x2 + x)2 + 4x2 + 4x + 4 - 16
= (x2 + x)2 + 4(x2 + x) + 4 - 16
= (x2 + x + 2)2 - 16
= (x2 + x + 2 - 4)(x2 + x + 2 + 4)
= (x2 + x - 2)(x2 + x + 6)