Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{-2xy}{1+xy}=-2xy-2\)
Áp dụng BĐT Cosi ta có :
\(2xy\le x^2+y^2\) = 1 Dấu "=" xảy ra
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2=y^2\\x^2+y^2=1\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\) ( Thỏa mãn ĐKXĐ x;y>0 )
=> A\(\ge-1-2=-3\)
Dấu "=" xảy ra
\(\Leftrightarrow\)\(x=y=\dfrac{\sqrt{2}}{2}\) ( Thỏa mãn ĐKXĐ x;y>0 )
Vậy GTNN của A=-3 \(\Leftrightarrow\)\(x=y=\dfrac{\sqrt{2}}{2}\)
\(a.\)
\(\text{*)}\) Áp dụng bđt \(AM-GM\) cho hai số thực dương \(x,y,\) ta có:
\(x+y\ge2\sqrt{xy}=2\) (do \(xy=1\) )
\(\Rightarrow\) \(3\left(x+y\right)\ge6\)
nên \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)
\(\Rightarrow\) \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)
\(\text{*)}\) Tiếp tục áp dụng bđt \(AM-GM\) cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\) ta có:
\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)
Do đó, \(D\ge6+5=11\)
Dấu \("="\) xảy ra khi \(x=y=1\)
Vậy, \(D_{min}=11\) \(\Leftrightarrow\) \(x=y=1\)
\(b.\) Bạn tìm điểm rơi rồi báo lại đây