Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x\sqrt{x}-y\sqrt{y}\right)=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-1}+\sqrt{y-1}}+x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow x=y\)
\(\Rightarrow S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)
Tại sao từ:\(\left(\sqrt{x-1}-\sqrt{y-1}\right)\) lại => đc: \(\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}\)??????????
\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)(ĐK:\(x;y\ge1\))
\(\Leftrightarrow\sqrt{x-1}+x\sqrt{x}=\sqrt{y-1}+y\sqrt{y}\)
Xét x<y\(\Rightarrow\sqrt{x-1}< \sqrt{y-1};x\sqrt{x}< y\sqrt{y}\)
\(\Rightarrow VT< VP\)
TT xét x>y=>VT>VP
\(\Rightarrow x=y\)
\(\Rightarrow S=x^2+3x^2-2x^2-8x+5\)
\(S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)
"="<=>x=y=2(tm)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Đặt \(x+\sqrt{1+x^2}=a\Rightarrow a-x=\sqrt{1+x^2}\Rightarrow a^2-2ax+x^2=1+x^2\)
=> \(a^2-1=2ax\Rightarrow x=\frac{1}{2}\left(a-\frac{1}{a}\right)\)
Tương tự, đặt \(y+\sqrt{1+y^2}=b\Rightarrow y=\frac{1}{2}\left(b-\frac{1}{b}\right)\)
=> x+y=\(\frac{1}{2}\left(a+b-\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{2}\left(a+b-\frac{3}{3a}+\frac{3}{3b}\right)=\frac{1}{2}\left(a+b-\frac{1}{3}a-\frac{1}{3}b\right)\)(vì ab=3)
=\(\frac{1}{2}.\frac{2}{3}\left(a+b\right)=\frac{1}{3}\left(a+b\right)\)
Mà \(\left(a+b\right)^2\ge2ab=6\Rightarrow a+b\ge\sqrt{6}\Rightarrow\frac{1}{3}\left(a+b\right)\ge\frac{\sqrt{6}}{3}\)
dấu = xảy ra <=> a=b<=> x=y bạn tự thay vào và tự tìm nhá
^_^
ĐKXĐ: \(x;y\ge1\)
\(\sqrt{x-1}-\sqrt{y-1}+x\sqrt{x}-y\sqrt{y}=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{y}+y\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-1}+\sqrt{y-1}}+x+\sqrt{y}+y\right)=0\)
\(\Leftrightarrow\sqrt{x}-\sqrt{y}=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow x=y\)
\(\Rightarrow S=x^2+3x^2-2x^2-4x+5\)
\(S=2x^2-4x+5=2\left(x-1\right)^2+3\ge3\)