\(A=\frac{1}{x}+\frac{1}{y}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

Áp dụng BĐT cosi với 2 số x,y > 0

Ta có: \(\frac{x+y}{2}\ge\sqrt{xy}\Leftrightarrow a\ge\sqrt{xy}\)

Áp dụng BĐT cosi với 2 số không âm \(\frac{1}{x},\frac{1}{y}\)

ta có: \(\frac{\frac{1}{x}+\frac{1}{y}}{2}\ge\sqrt{\frac{1}{x}.\frac{1}{y}}\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{1}{\sqrt{xy}}\left(1\right)\)

Tiếp tục xét: \(\frac{2}{\sqrt{xy}}\ge\frac{2}{a}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{2}{a}\)

A đạt GTNN khi \(\frac{1}{x}=\frac{1}{y}\Leftrightarrow x=y=a\)

20 tháng 9 2018

Áp dụng BDT BU-nhi-a mo rong, ta có:

A=\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}\)

Do \(x+y=2a\)nen:

A\(\ge\frac{4}{2a}\)

\(\Leftrightarrow A\ge\frac{2}{a}\)

Dau bang xay ra khi : x=y=a

2 tháng 3 2020

\(A=\left(x+y+z+\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge2\sqrt{x.\frac{1}{4x}}+2\sqrt{y.\frac{1}{4y}}+2\sqrt{z.\frac{1}{4z}}+\frac{3}{4}\left(\frac{9}{x+y+z}\right)\)

\(\ge1+1+1+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)

Dấu "=" xảy ra <=> x = y = z = 1/2

Vậy min A = 15/2 tại x = y = z = 1/2

22 tháng 6 2020

Lời giải của em ạ :D

\(A=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\ge x+y+z+\frac{9}{x+y+z}\)

Đặt \(t=x+y+z\le\frac{3}{2}\)

Khi đó \(A=t+\frac{9}{t}=\left(t+\frac{9}{4t}\right)+\frac{27}{4t}\ge3+\frac{27}{4\cdot\frac{3}{2}}=\frac{15}{2}\)

Đẳng thức xảy ra tại x=y=z=1/2

11 tháng 3 2018

a,

Có : 1/x + 1/y >= 4/x+y = 4/1 = 4

Dấu "=" xảy ra <=> x=y=1/2

Vậy ..............

b, Áp dụng bđt sovac ta có : 

a^2/x + b^2/y >= (a+b)^2/x+y = (a+b)^2 >= 0

Dấu "=" xảy ra <=> x=y=1/2 và a=-b

Vậy ..............

Tk mk nha

26 tháng 11 2019

câu c áp dụng \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\) và \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)bạn tự giải nhá.

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

22 tháng 11 2019

Câu hỏi của Hoàng Thái Dương - Toán lớp 8 - Học toán với OnlineMath

30 tháng 5 2020

A = \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(=\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{1}{2}\left[\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\)

\(\ge\frac{1}{2}\left[\left(x+y\right)+\frac{4}{x+y}\right]^2=\frac{1}{2}\left(1+4\right)^2=\frac{25}{2}\)

Dấu "=" xảy ra <=> x = y =1/2

Vậy GTNN của A = 25/2 tại x = y = 1/2

1 tháng 6 2020

Ta có :

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(=x^2+\frac{1}{x^2}+2+y^2+\frac{1}{y^2}+2\)

\(=4+\left(x^2+y^2\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)

\(\ge4+\frac{\left(x+y\right)^2}{2}+2\sqrt{\frac{1}{\left(xy\right)^2}}\)

\(=4+\frac{1}{2}+\frac{2}{xy}\ge4+\frac{1}{2}+\frac{2}{\frac{\left(x+y\right)^2}{4}}=4+\frac{1}{2}+8=\frac{25}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)

22 tháng 11 2019

Câu hỏi của Hoàng Thái Dương - Toán lớp 8 - Học toán với OnlineMath