K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

AK//BC(gt)

BA//CK(gt)

\(\Rightarrow\)ABCK là hbh

CMTT \(\Rightarrow\)ACBM là hbh

\(\Rightarrow\)MA=AK(=BC)

\(\Rightarrow\) NA là đ trung tuyến

CMTT \(\Rightarrow\)KB là đ trung tuyến\(\Rightarrow\)MC là đ trung tuyến

\(\Rightarrow\)NA, KB, MC đồng quy tại 1 điểm

17 tháng 8 2019

thanks

1 tháng 3 2017

A B C D O M N

c)\(\Delta AOB,\Delta BOC\)có chung đường cao hạ từ B nên\(\frac{S_1}{S_4}=\frac{OA}{OC}\left(1\right)\)

\(\Delta AOD,\Delta DOC\)có chung đường cao hạ từ D nên\(\frac{S_3}{S_2}=\frac{OA}{OC}\left(2\right)\)

Từ (1) và (2),ta có\(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\)

d) Áp dụng hệ quả định lí Ta-lét,ta có :

\(\Delta ADB\)có OM // AB nên\(\frac{OM}{AB}=\frac{OD}{DB}\left(3\right)\)

\(\Delta ABC\)có ON // AB nên\(\frac{ON}{AB}=\frac{OC}{AC}\left(4\right);\frac{ON}{AB}=\frac{NC}{BC}\left(5\right)\)

\(\Delta COD\)có AB // CD nên\(\frac{OD}{DB}=\frac{OC}{AC}\left(6\right)\)

\(\Delta BDC\)có ON // DC nên\(\frac{ON}{CD}=\frac{BN}{NC}\left(7\right)\)

Từ (3),(5),(6),ta có\(\frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON\Rightarrow MN=2ON\Rightarrow\frac{1}{ON}=\frac{2}{MN}\)

Cộng (5) và (7),vế theo vế,ta có :\(\frac{ON}{AB}+\frac{ON}{CD}=\frac{BN}{BC}+\frac{NC}{BC}\Leftrightarrow ON.\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{ON}=\frac{2}{MN}\)

P/S : Bạn xem lại đề để có thể xác định E,F nhé

1 tháng 3 2017

chịu rùi tớ không biết !!!

22 tháng 4 2020

Nhà hàng Tôm hùm kính chào quý khách ĐC : 255 Nguyễn Huệ, Q tân bình , TP HCM nhà hàng của gđ mik rất mong dc đón các bn

22 tháng 4 2020

O A B C D M Q N P

Bài 1: Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, B1 sao cho các đường thẳng AA1, BB1, CC1, đồng quy tại O. Đường thẳng qua O // AC cắt A1B1, B1C1, tại K và M tương ứng. CMR OK = OM Bài 2: Cho tam giác ABC có I là trung điểm BC. Đường thẳng d qua I cắt AB, AC tại M và N. Đường thẳng d' đi qua I cắt AB, AC tại P và Q. Giả sử M và P nằm về một phía đối với BC và các đường thẳng...
Đọc tiếp

Bài 1: Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, Bsao cho các đường thẳng AA1, BB1, CC1, đồng quy tại O. Đường thẳng qua O // AC cắt A1B1, B1C1, tại K và M tương ứng. CMR OK = OM 

Bài 2: Cho tam giác ABC có I là trung điểm BC. Đường thẳng d qua I cắt AB, AC tại M và N. Đường thẳng d' đi qua I cắt AB, AC tại P và Q. Giả sử M và P nằm về một phía đối với BC và các đường thẳng NP, MQ cắt BC tại E và F. CM IE = IF.

Bài 3: Qua điểm M tùy ý trên đáy lớn AB của hình thang ABCD ta kẻ các đường thẳng // với 2 đường chéo AC và BD, Các đường // này cắt BC, AD lần lượt ại E, F tương ứng. Đoạn thẳng EF cắt AC, BD tương ứng tại I và J.

1) CMR nếu H là TĐ của IJ thì H cũng là TĐ của EF

2) Trong trường hợp AB = 2CD hãy chỉ ra vị trí của M trên AB sao cho EJ = JI = IF

Giải giúp em :) Cảm ơn nhiều <3

0