K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

Xét \(\Delta ABC\)có E và F lần lượt là trung điểm của AB, BC (gt)

\(\Rightarrow\)EF là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\hept{\begin{cases}EF//AC\\EF=\frac{1}{2}AC\end{cases}}\)(tính chất đường trung bình trong tam giác)

Chứng minh tương tự, ta cũng có \(\hept{\begin{cases}GH//AC\\GH=\frac{1}{2}AC\end{cases}}\)

Từ đó dễ thấy \(\hept{\begin{cases}EF//GH\left(//AC\right)\\EF=GH\left(=\frac{1}{2}AC\right)\end{cases}}\)

Xét tứ giác EFGH có EF//GH (cmt) và EF = GH (cmt) \(\Rightarrow\)Tứ giác EFGH là hình bình hành (dấu hiệu nhận biết)

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình

=>EF//AC và EF=AC/2(1)

Xét ΔCDA có 

G là trung điểm của CD

H là trung điểm của DA

Do đó: GH là đường trung bình

=>GH//AC và GH=AC/2(2)

Từ (1) và (2) suy ra EF//GH và EF=GH

hay EFGH là hình bình hành(3)

Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của DA

Do đó: EH là đường trung bình

=>EH//BD

=>EH⊥AC

=>EH⊥EF(4)

Từ (3) và (4) suy ra EFGH là hình chữ nhật

b: \(S_{ABCD}=\dfrac{AC\cdot BD}{2}\)

c: \(S_{EFGH}=EF\cdot EH\)

+ E là trung điểm AB, F là trung điểm BC

⇒ EF là đường trung bình của tam giác ABC

⇒ EF // AC và EF = AC/2

+ H là trung điểm AD, G là trung điểm CD

⇒ HG là đường trung bình của tam giác ACD

⇒ HG // AC và HG = AC/2.

+ Ta có:

EF //AC, HG//AC ⇒ EF // HG.

EF = AC/2; HG = AC/2 ⇒ EF = HG

⇒ tứ giác EFGH là hình bình hành.

15 tháng 2 2020

có thể giúp mk trả lời phần a ko ạ

17 tháng 12 2023

a: Xét ΔABC có

E,F lần lượt là trung điểm của BA,BC

=>EF là đường trung bình của ΔABC

=>EF//AC và \(EF=\dfrac{AC}{2}\)

Xét ΔCDA có

G,H lần lượt là trung điểm của CD,DA

=>GH là đường trung bình của ΔCDA

=>GH//AC và \(GH=\dfrac{AC}{2}\)

Ta có: EF//AC

GH//AC

Do đó: EF//GH

Ta có: \(EF=\dfrac{AC}{2}\)

\(GH=\dfrac{AC}{2}\)

Do đó: EF=GH

Xét tứ giác EFGH có

EF//GH

EF=GH

Do đó: EFGH là hình bình hành

b: Xét ΔBAD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình của ΔBAD

=>\(EH=\dfrac{BD}{2}\)

mà BD=AC

và EF=AC/2

nên EH=EF

Hình bình hành EFGH có EF=EH

nên EFGH là hình thoi

=>Chu vi hình thoi EFGH là: \(4\cdot EF=4\cdot\dfrac{AC}{2}=2\cdot AC=12\left(cm\right)\)

29 tháng 10 2021

undefined