Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt:
\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk\)
\(\Rightarrow c=dk\)
Thế vào vế phải:
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\frac{bk^2+b^2}{dk^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}=\frac{b}{d}\)
Thế vào vế trái:
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}=\frac{b}{d}\)
=> Vế phải = vế trái
=> ĐPCM
a
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
b
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)
c
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{5a^2}{5b^2}=\frac{3c^2}{3d^2}=\frac{5a^2+3c^2}{3d^2+5b^2}\)
1.Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có :\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
2.a) Từ 2a=5b=3c suy ra \(\frac{2a}{30}=\frac{5b}{30}=\frac{3c}{30}\Rightarrow\frac{a}{15}=\frac{b}{6}=\frac{c}{10}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{15}=\frac{b}{6}=\frac{c}{10}=\frac{a+b-c}{15+6-10}=\frac{-44}{11}=-4\)
Khi đó: \(\frac{a}{15}=-4\Rightarrow a=-4.15=-60\)
\(\frac{b}{6}=-4\Rightarrow b=-4.6=-24\)
\(\frac{c}{10}=-4\Rightarrow c=-40\)
Vậy a=-60;b=-24;c=-40
b) Từ 4x=5y suy ra\(\frac{x}{5}=\frac{y}{4}\)
Đặt \(\frac{x}{5}=\frac{y}{4}=k\) suy ra x=5k;y=4k
Ta có : 5k.4k=80
\(\Rightarrow20k^2=80\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
Với k=2 thì x=5.2=10; y=4.2=8
Với k=-2 thì x=5-(-2)=-10; y=4.(-2)=-8
3. Ta có : |x-2011|+|x-200|=|-x+2022|+|x-200|
Áp dụng t/c của công thức |a|+|b|\(\ge\)|a+b| ta có
\(\left|-x+2011\right|+\left|x-200\right|\ge\left|-x+2011+x-200\right|=1811\)
Dấu "=" xảy ra khi và chỉ khi : (-x+2011)(x-200)\(\ge0\)
Suy ra : \(\orbr{\begin{cases}\hept{\begin{cases}-x+2011\ge0\\x-200\ge0\end{cases}}\\\hept{\begin{cases}-x+2011\le0\\x-200\le0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x\le2011\\x\ge200\end{cases}}\\\hept{\begin{cases}x\ge2011\\x\le200\end{cases}}\end{cases}\Rightarrow}200\le x\le2011\frac{ }{ }\)
Vậy GTNN của A bằng 1811 khi và chỉ khi \(200\le x\le2011\)
4.đề bài thiếu hả ?
1/ Đặt :
\(\frac{a}{b}=\frac{c}{d}=k\) \(\Leftrightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{bd.k^2}{bd}=k^2\left(1\right)\)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
2/ \(2a=5b=3c\)
\(\Leftrightarrow\frac{2a}{30}=\frac{5b}{30}=\frac{3c}{30}\)
\(\Leftrightarrow\frac{a}{15}=\frac{b}{6}=\frac{c}{10}\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\frac{a}{15}=\frac{b}{6}=\frac{c}{10}=\frac{a+b-c}{15+6-10}=\frac{-44}{11}=-4\)
\(\Leftrightarrow\hept{\begin{cases}\frac{a}{15}=-4\\\frac{b}{6}=-4\\\frac{c}{10}=-4\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a=-60\\b=-24\\c=-40\end{cases}}\)
Vạy ...
b/ \(4x=5y\)
\(\Leftrightarrow\frac{x}{5}=\frac{y}{4}\)
Đặt : \(\frac{x}{5}=\frac{y}{4}=k\)\(\Leftrightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)
Lại có : \(xy=80\)
\(\Leftrightarrow5k.4k=80\)
\(\Leftrightarrow20k=80\)
\(\Leftrightarrow k=4\)
\(\Leftrightarrow\hept{\begin{cases}x=5.4=20\\y=4.4=16\end{cases}}\)
Vậy ...
Câu 2:A= 75.(42004+42003+.....+42+4+1)+25=75.|(42005-1):3+25=25.(42005-1+1)=25.42005chia hết 100
Suy ra A chia hết cho 100
CHÚC BẠN HỌC TỐT NHÉ !!!!!!!!!
1/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}=\frac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}và\frac{a}{c}=\frac{3b}{3d}=\frac{a+3b}{c+3d}\)
\(\Rightarrow\frac{a-2b}{c-2d}=\frac{a+3b}{c+3d}\left(=\frac{a}{c}\right)\)
2/ b2 = ac => \(\frac{a}{b}=\frac{b}{c}\) và c2 = bd\(\frac{c}{d}=\frac{b}{c}\) =>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}=k^3\) (1)
Mặt khác: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)
Áp dụng tính chất tỉ lê thức ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)(2)
Từ (1) và (2) ta được: \(\Rightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(=k^3\right)\)
đừng học kiểu đối phó bạn, ko hiểu tới đó cô sẽ giảng mà. cô có ăn thịt bạn đâu mà lo :)
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c},c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
\(\frac{a^3}{b^3}=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\left(2\right)\)
=> đpcm
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(đpcm\right)\)
b, Tỉ số = nhau + tất vào là xông
Câu a)
\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}\)
\(\Leftrightarrow\left(a+b\right).\left(c-2d\right)=\left(a-2b\right).\left(c+d\right)\)
\(\Leftrightarrow a.\left(c-2d\right)+b.\left(c-2d\right)=a.\left(c+d\right)-2b.\left(c+d\right)\)\(\)
\(\Leftrightarrow ac-2ad+bc-2bd=ac+ad-2bc-2bd\)
\(\Leftrightarrow bc-2ad=ad-2bc\)
\(\Leftrightarrow bc+2bc=ad+2ad\)
\(\Leftrightarrow3bc=3ad\)
\(\Leftrightarrow bc=ad\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Câu b)
Ta có : \(a+d=b+c\Rightarrow\left(a+d\right)^2=\left(b+c\right)^2\)
\(\Leftrightarrow a^2+2ad+d^2=b^2+2bc+c^2\) (*)
Lại có : \(a^2+d^2=b^2+c^2\)
\(\Leftrightarrow2ad=2bc\) ( bớt cả hai vế của đẳng thức (*) đi \(a^2+d^2\) và \(b^2+c^2\))
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
Vậy : 4 số a, b, c, d có thể lập được 1 tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).