Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pi-ta-go, ta có chiều dài mỗi đường chéo (hay mỗi đoạn dây) sẽ là √3² + 4² = 5 (cm).
Do mỗi đường chéo có kích thước bằng nhau nên tổng chiều dài sợi dây là 5x 4= 20 (cm).
Đáp số; 20 cm
a/
Trong tam giác BDM có:
=> góc DBM + góc BDM + góc BMD = 180 độ
Ta có góc BMC là góc bẹt ( M thuộc BC )
=> góc EMC + góc DME + góc BMD = 180 độ
Lại có góc DMB = DME ( gt )
Từ tất cả những điều trên suy ra góc BDM = góc EMC
Xét tam giác BDM và tam giác CME ta có:
góc DMB = góc DME (gt)
góc BDM = góc EMC (cmt)
Vậy tam giác BDM đồng dạng với tam giác CME ( g-g)
b/
Tma giác BDM và tam giác CME đồng dạng
=> BD / CM = BM / CE => BD . CE = CM . BM
Mà CM . BM không bao giờ đổi ( vì BM và CM không đổi )
=> BD . CE cũng không đổi
c) Dễ thấy (BD/CM) = (DM/ME) cmt
=> Tam giác DBM đồng dạng tam giác DME (c-g-c)
=> góc BDM = góc MDE
Vậy DM là phân giác của góc BDE (đpcm)
a.Trong tgBDM có:
^DBM + ^BDM + ^BMD = 180o (1)
^EMC + ^DME + ^BMD = 180o (2)
Mà ^DMB = ^DME ( gt ) (3)
Từ (1) và (2)=>^BDM = ^EMC
Xét tg BDM và tg CME ta có:
^DMB = ^DME (gt)
^BDM = ^EMC (cmt)
=> tgBDM đồng dạng với tg CME
b.Ta có:tgBDM đồng dạng với tgCME
\(\Rightarrow\frac{BD}{CM}=\frac{BM}{CE}\Rightarrow BD.CE=CM.BM\)
Mà CM.BM không đổi(do BM và CM không đổi)
=> BD.CE không đổi
c. Nhận thấy :\(\frac{BD}{CM}=\frac{DM}{ME}\)
=> Tg DBM đồng dạng tgDME
=> ^BDM = ^MDE
=>DM là phân giác của ^BDE (đpcm)