Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABCΔABC có AB=AC.
⇒C<B
Xét ΔABH&ΔACHΔABH&ΔACH vuông tại H.
=> ABHˆ+BAHˆ=90o
ACHˆ+CAHˆ=90o
mà Cˆ<Bˆ⇒BAHˆ<CAHˆ
a) Xét ∆ABD có :
AH là trung trực đồng thời là trung tuyến
=> ∆ABD cân tại A
Mà B = 60°
=> ∆ABD đều
b ) Ta có : CAD = BAC - BAD
= 90° - 60° = 30°
=> EAD = 30°
Ta có : ADH = 60° (∆ABD đều)
Ta có : HAD = AHD - ADH =90° - 60° = 30°
Ta có AH vuông góc với BC
ED vuông góc với BC
=> AH//ED
=> HAD = ADE = 30° ( so le trong)
=> ∆AED cân tại E
A B C H D E F
a, xét tam giác AHB và tam giác AHD có : AH chung
góc AHB = góc AHD = 90 do AH là đường cao (gt)
HB = HD (gt)
=> tam giác AHB = tam giác AHD (2cgv)
=> AB = AD (đn)
=> tam giác ABD cân tại A (gt)
mà góc ABC = 60 (gt)
=> tam giác ABD đều (tc)
b, tam giác AHB = tam giác AHD (câu a)
=> góc HAB = góc HAD (đn) (1)
xét tam giác AHB vuông tại H => góc HAB = góc HBA = 90 (tc)
mà góc HBA = 60 (gt)
=> góc HAB = 90 - 60 = 30 và (1)
=> góc HAB = góc HAD = 30 (2)
có tam giác ABD đều (câu a) => góc BAD = 60 (đn)
góc BAD + góc DAC = góc BAC
mà góc BAC = 90 (gT)
=> góc DAC = 90 - 60 = 30 (gt) và (2)
=> góc DAC = góc DAH = 30 (3)
có AH _|_ BC do AH là đường cao (Gt) và ED _|_ BC (gt)
=> AH // ED (tc)
=> góc EDA = góc DAH (so le trong) và (3)
=> góc DAC = góc EDA
=> tam giác AED cân tại E (tc)
c, tam giác ABD đều (Câu a)
=> góc ABD = góc BAD (đn)
tam giác ABC vuông tại A (gt) => góc ACB + góc ABC = 90 => góc ACB = 90 - ABC
góc CAD + góc BAD = 90 => góc CAD = 90 - góc BAD
=> góc CAD = góc ACB
=> tam giác CAD cân tại D (đn)
=> DA = DC (đn)
xét tam giác CDF và tam giác ADH có : góc CDF = góc ADH (đối đỉnh)
góc CFD = góc AHD = 90
=> tam giác CDF = tam giác ADH (ch - gn)
=> FC = HA (đn)
DF = DH (đn)
=> tam giác DFH cân tại D (đn)
=> góc DFH = (180 - góc FDH) : 2 (tc) (4)
có góc FDH + góc HDA = 180 (kb)
mà góc HDA = 60 do tam giác ABD đều )
=> góc FDH = 180 - 60 = 120 và (4)
=> góc DFH = (180 - 120) : 2 = 30
góc DAH = 30 (câu b)
=> góc DFH = góc DAH = 30
=> tam giác FHA cân tại H (tc)
=> HF = HA (đn) mà HA = CF (Cmt)
=> HF = HA = CF
1.
Ta có : AC<AD (vì : D là tia đối của tia BC )
=> HD<HC
3.
Ta có : AB+AC>AH (vì : tog 2 cah cua tam giác luôn lớn hơn cah con lại)
Mà : 1/2AH<AB+AC
=> AB+AC>2AH
4.
Ta có : ko hiu
`@` `\text {Ans}`
`\downarrow`
Ta có: AH là đường vuông góc của `\Delta ABC`
`=>` AB, AC là đường xiên
`=> HB, HC` lần lượt là hình chiếu của AB, AC
`@` Theo định lý quan hệ giữa đường xiên và hình chiếu (Đường xiên có hình chiếu lớn hơn thì lớn hơn. Đường xiên có hình chiếu nhỏ hơn thì nhỏ hơn. Các đường xiên bằng nhau thì hình chiếu cũng bằng nhau.)
`=>` AB < AC.
Co the ko dung duong xien và hình chiếu đc ko ạ
Cảm ơn ạ