Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.
a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)
Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)
b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K
Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:
\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)
\(\Rightarrow AK\perp BI\)tại H
a) Xét t/g CKM vuông tại K và t/g BHM vuông tại H có:
CM = BM (gt)
CMK = BMH ( đối đỉnh)
Do đó, t/g CKM = t/g BHM ( cạnh huyền - góc nhọn)
=> KM = HM (2 cạnh tương ứng)
=> M là trung điểm HK (đpcm)
b) Xét t/g CMH và t/g BMK có:
HM = KM (câu a)
CMH = BMK ( đối đỉnh)
CM = BM (gt)
Do đó, t/g CMH = t/g BMK (c.g.c)
=> CHM = BKM (2 góc tương ứng)
Mà CHM và BKM là 2 góc ở vị trí so le trong nên HC // BK (đpcm)
Bổ sung thêm ý c là : Chứng minh: HK = AM và BN vuông góc với NC