K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMHL vuông tại L và ΔMKL vuông tại L có 

ML chung

HL=KL

Do đó: ΔMHL=ΔMKL

b: Xét ΔMHN và ΔMKN có 

MH=MK

\(\widehat{HMN}=\widehat{KMN}\)

MN chung

Do đó; ΔMHN=ΔMKN

Suy ra: \(\widehat{MHN}=\widehat{MKN}=90^0\)

hay ΔMKN vuông tại K

20 tháng 12 2019

B ở đâu vậy bạn ? Trong đề làm gì có nói kẻ B mà từ B đã kẻ đường vuông góc rồi ?

20 tháng 12 2019

từ P nha

30 tháng 12 2015

bài này cực dễ tụ làm nha

30 tháng 12 2015

tick đi sau mk làm cho

t

23 tháng 6 2020

M P N 3 4 A C G

a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ

\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)

THAY\(NP^2=4^2+3^2\)

\(NP^2=16+9\)

\(NP^2=25\)

\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)

XÉT \(\Delta MNP\)

\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)

\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)

B) xét \(\Delta\text{ CPM}\)\(\Delta\text{CPA}\)

 \(PM=PA\left(GT\right)\)

\(\widehat{MPC}=\widehat{APC}=90^o\)

PC LÀ CAH CHUNG 

=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)

23 tháng 6 2020

c)

\(\Delta CPM=\Delta CPA\left(cmt\right)\)

\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)

\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)

             \(\widehat{NMC}+\widehat{CMP}=90^o\)

\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)

\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)

\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)

\(\Rightarrow\Delta NMC\text{ cân}\)

\(\Rightarrow CN=CM\left(đpcm\right)\)

4 tháng 12 2016

Xét tam giác MKN và tam giác PKH ta có

MK=KP ( K là trung điểm MP )

NK=KH ( K là trung điểm NH )

góc MKN = góc PKH ( doi dinh)

-> tam giac MKN = tam giac PKH (c-g-c)
b) 

Xét tam giác MKH và tam giác PKN ta có

MK=KP ( K là trung điểm MP )

HK=KN( K là trung điểm NH )

góc MKH = góc PKN ( doi dinh)

-> tam giac MKH = tam giac PKH (c-g-c)

-> góc HMK = góc  HPN

mà 2 goc o vi tri sole trong

nên MH// NP

c) ta có

góc MNK = góc KHP (tam giac MKN = tam giac PKH)

mà 2 goc o vi trí sole trong

nên NM // PH

mà NM vuông góc MP tại M ( tam giác MNP vuông tại M)

-> PH vuông góc MP

5 tháng 4 2022

Không có học trò dốt

Mà chỉ có thầy chưa giỏi

5 tháng 4 2022

`Answer:`

undefined

a) Áp dụng định lý Pytago vào `\triangleAMN` vuông tại `A`, ta có:

`AN^2 =MN^2 -AM^2 <=>AN^2 =37^2 -12^2 <=>AN^2 =1369-144=1225<=>AN=35cm`

Ta có: `AM<AN<MN=>\hat{N}<\hat{M}<\hat{A}`

b) Xét `\triangleABI` và `\triangleNBI`, ta có:

`BI` chung

`AI=NI`

`\hat{AIB}=\hat{BIN}=90^o`

`=>\triangleABI=\triangleNBI`

c) Ta có:

`BI` vuông góc `AN`

`AM` vuông góc `AN`

\(\Rightarrow BI//AM\)

Mà `I` là trung điểm `AN`

`=>B` là trung điểm `MN`

`=>NB=1/2 MN`

Xét `\triangleACN`, ta có:

`NB` và `CI` là đường trung tuyến mà đều đi qua `D`

`=>D` là trọng tâm

`=>ND=2/3 NB`

Mà `NB=MB`

`=>ND=1/3 MN`

`=>MN=3ND`

12 tháng 5 2017

a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)

b) xét tam giác MNI và MPI có 

    MI chung 

    MN=MP(GT)

    IN=IP(MI là trung tuyến nên I là trung điểm NP)

SUY ra tam giác MNI=MPI(C-C-C)

c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)

d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I

   Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP

    Mà NP=12cm(gt) suy ra NI=12x1/2=6cm

   xét tam giác vuông MNI có

    NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)

   Suy ra MI2=NM2-NI2

 mà NM=10CM(gt) NI=6CM(cmt)

suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8

mà MI>0 Suy ra MI=8CM (đpcm)

ế) mik gửi cho bn bằng này nhé 

12 tháng 5 2017

a) Vì MN=MP => tam giác MNP là tam giác cân tại M.

b)Xét tam giác MIN và tam giác MIP có:

           MN=MP (vì tam giác MNP cân)

           \(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)

            NI=PI(vì MI là trung tuyến)

=> tam giác MIN=tam giác MIP(c.g.c)

c) Ta có: MN=MP

              IN=IP

=> M,I thuộc trung trực của NP

Hay MI là đường trung trực của NP

d) IN=IP=NP/2=12/2=6(cm)

Xét tam giác MIN có góc MIN =90*

 =>  MN^2=MI^2 + NI^2

 =>  MI^2=MN^2-NI^2

 =>  MN^2 = 10^2 - 6^2

 =>  MN = 8

e) Tam giác HEI có goc IHE=90*

 => góc HEI + góc HIE= 90*

Mà góc HIE = góc MEF/2

 => góc MEF/2 + góc HEI = 90*   (1)

Mà góc MEF + góc HEI + góc IEF = 180*

 => góc MEF/2 + góc IEF = 90*     (2)

  Từ (1) và (2)   =>  góc HEI = góc IEF

Hay EI là tia phân giác của góc HEF