K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2023

Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot NP=MN^2\)

=>\(NH\cdot3NH=6^2=36\)

=>\(NH^2=12\)

=>\(NH=2\sqrt{3}\left(cm\right)\)

=>\(NP=3\cdot NH=6\sqrt{3}\left(cm\right)\)

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MP^2+6^2=\left(6\sqrt{3}\right)^2=108\)

=>\(MP^2=108-36=72\)

=>\(MP=6\sqrt{2}\left(cm\right)\)

11 tháng 10 2021

Áp dụng HTL trong tam giác MNQ vuông tại Q:

\(MQ^2=QH.QN\)

\(\Rightarrow QH=\dfrac{MQ^2}{QN}=\dfrac{12^2}{20}=7,2\)

Áp dụng đ/lý Pytago:

\(QN^2=MN^2+MQ^2\)

\(\Rightarrow MN=\sqrt{QN^2-MQ^2}=\sqrt{20^2-12^2}=16\)

Áp dụng HTL:

\(MN^2=NH.QN\)

\(\Rightarrow NH=\dfrac{MN^2}{QN}=\dfrac{16^2}{20}=12,8\)

Câu 1: C

Câu 2: A

Câu 3: D