K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2024

a. 

Xét ΔMNP có:

   MN > MP (16 cm > 7 cm)

   MPN là góc đối diện cạnh MN

   MNP là góc đối diện cạnh MP

=> P > N (QH giữa góc và cạnh đối diện).

b.

  Xét góc ngoài Δ đỉnh P

 => 180o - P

 mà P > N (cmt)

=> 180o - N > 180o - P

=> góc ngoài đỉnh N > góc ngoài đỉnh P

Chúc Bạn Học Tốt 

5 tháng 3 2018

XÉT \(\Delta MNP\)

CÓ: \(MP>NP>MN\left(8cm>7cm>5cm\right)\)

\(\Rightarrow\widehat{N}>\widehat{M}>\widehat{P}\)( ĐỊNH LÍ : TRONG 1 TAM GIÁC, GÓC ĐỐI DIỆN VỚI CẠNH LỚN HƠN LÀ GÓC LỚN HƠN)

CHÚC BN HỌC TỐT!!!!
 

Bài 2: Cho tam giác ABC có góc A>90 độ , lấy điểm M thuộc cạnh AB .a) So sánh AC và MC b) Chứng minh tam giác MBC là tam giác tùc) Chứng minh AC <MC <BCBài 3: Cho tam giác MNP có Góc N>90 độ , trên tia đối của tia NP lấy điểm Q .a) So sánh MN và MP b) Chứng minh tam giác MPQlà tam giác tù.c) Chứng minh MN<MP<MQBài 4: Cho tam giác ABC có AB=3 cm, AC=4 cma) So sánh góc B với gócCb) Hạ AH vuông góc với BC tại H . So sánh góc...
Đọc tiếp

Bài 2: Cho tam giác ABC có góc A>90 độ , lấy điểm M thuộc cạnh AB .
a) So sánh AC và MC 
b) Chứng minh tam giác MBC là tam giác tù
c) Chứng minh AC <MC <BC
Bài 3: Cho tam giác MNP có Góc N>90 độ , trên tia đối của tia NP lấy điểm Q .
a) So sánh MN và MP 
b) Chứng minh tam giác MPQlà tam giác tù.
c) Chứng minh MN<MP<MQ
Bài 4: Cho tam giác ABC có AB=3 cm, AC=4 cm
a) So sánh góc B với gócC
b) Hạ AH vuông góc với BC tại H . So sánh góc BAH và góc CAH
Bài 5: Cho tam giác ABC có AB = 5 cm, AC = 3 cm
a) So sánh góc B với góc C
b) So sánh hai góc ngoài tại các đỉnh B và C của tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A có AC=2AB . Lấy điểm E trên cạnh AC sao cho
AB=AE . Trên tia đối của tia EB lấy điểm D sao cho EB=ED
a) Chứng minh tam giác ABE= tam giác CDE 
b) So sánh góc ABE  và góc CBE

0

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔNMK có NM=NK

nên ΔNMK cân tại N

mà \(\widehat{MNK}=60^0\)

nên ΔNMK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔMNK có NM=NK

nên ΔMNK cân tại N

Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)

nên ΔMNK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

12 tháng 3 2018

Thực hiện so sánh các cạnh: \(MN< NP< MP\)

Dựa vào tích chất cạnh và góc đối diện trong tam giác: \(\widehat{P}< \widehat{M}< \widehat{N}\)

12 tháng 3 2018

Thanksbn nha!!!!!!

24 tháng 8 2021

Huhu giúp mình vứiiii;-;