Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F I K 1 1 1
a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=4,8\left(cm\right)\)
b) Xét tam giác AEH và tam giác AHB có:
\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)
c) Xét tam giác AHC và tam giác AFH có:
\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)
\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ )
\(\Rightarrow AH^2=AC.AF\)
d) Xét tứ giác AEHF có:
\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)
\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )
\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)
Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)
\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)
Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)
Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)
Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)
Xét tam giác ABC và tam giác AFE có:
\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)
e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)
Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC
\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc) (6)
Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF
\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc) (7)
Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)
\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)
a) Ta có: AB^2 + AC^2 = 21^2 + 28^2 = 35^2 = BC^2
Vậy Tam giác ABC vuông tại A (đl Pytago đảo)
b) Ta có: Góc B + góc C = 90 độ (cmt câu a)
Góc HAC + góc C = 90 độ (Tam giác HAC vuông tại H)
=> Góc B = góc HAC
Mà Góc AHB= Góc AHC = 90 độ (Đường cao AH)
Vậy Tam giác HBA ~ tam giác HAC (góc - góc)
c)
Theo tính chất đường phân giác trong tam giác:
MB/ AB = MC / AC
<=> MB. AC = MC . AB
<=> MB . AC = (35- MB) . AB
<=> 35AB= MB.(AB+AC)
<=> MB = 35AB/(AB+AC) = 35.21/(21+28) = 15 cm
=> MC= 35 - 15 = 20 cm
Vậy MB = 15 cm, MC 20 cm
(Bạn tự vẽ hình và ghi giả thuyết kết luận nhé!)
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH~ΔCBA
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
ΔABH~ΔCBA
=>\(\dfrac{AH}{CA}=\dfrac{AB}{CB}\)
=>\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9,6\left(cm\right)\)
c: Xét ΔBAC có BK là phân giác
nên \(\dfrac{AK}{KC}=\dfrac{BA}{BC}\left(1\right)\)
=>\(\dfrac{AK}{BA}=\dfrac{KC}{BC}\)
=>\(\dfrac{AK}{12}=\dfrac{KC}{20}\)
=>\(\dfrac{AK}{3}=\dfrac{KC}{5}\)
mà AK+KC=AC=16cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AK}{3}=\dfrac{KC}{5}=\dfrac{AK+KC}{3+5}=\dfrac{16}{8}=2\)
=>\(AK=2\cdot3=6\left(cm\right)\)
d: Xét ΔBAK vuông tại A và ΔBHI vuông tại H có
\(\widehat{ABK}=\widehat{HBI}\)
Do đó: ΔBAK~ΔBHI
=>\(\widehat{BKA}=\widehat{BIH}\)
=>\(\widehat{AIK}=\widehat{AKI}\)
=>ΔAKI cân tại A