Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: ΔABD=ΔEBD
=>BA=BE và DA=DE
Xét ΔBAE có BA=BE
nên ΔBAE cân tại B
c: Ta có: DA=DE
DE<DC(ΔDEC vuông tại E nên DC là cạnh huyền)
=>DA<DC
d: BA=BE
=>B nằm trên đường trung trực của AE(1)
DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm của AE
=>BD\(\perp\)AE tại M và M là trung điểm của AE
CG=2GM nên \(GM=\dfrac{1}{2}CG\)
CG+GM=CM
=>\(\dfrac{1}{2}CG+CG=CM\)
=>\(CM=\dfrac{3}{2}CG\)
=>\(CG=\dfrac{2}{3}CM\)
Xét ΔEAC có
CM là đường trung tuyến
\(CG=\dfrac{2}{3}CM\)
Do đó: G là trọng tâm của ΔEAC
Xét ΔEAC có
G là trọng tâm
N là trung điểm của EC
Do đó: A,G,N thẳng hàng
Sửa đề .....Gọi K là giao điểm của HD và AB
a)Xét \(\Delta ABD\)VÀ \(\Delta HBD\)CÓ:
\(\widehat{BAD}=\widehat{BHD}=90^o\)
BD CHUNG
\(\widehat{ABD}=\widehat{HBD}\)
DO ĐÓ \(\Delta ABD\)=\(\Delta HBD\)(CH-GN)
SUY RA AD= HD
b)CÂU b BẠN CHỨNG MINH \(\Delta BCK\)CÂN TẠI B
MÀ TRONG TAM GIÁC CÂN ĐƯỜNG PHÂN GIÁC ĐỒNG THỜI LÀ ĐƯỜNG TRUNG TRỰC
BẠN SUY RA ĐƯỢC BD VUÔNG GÓC CK
c) CỦA CÂU b
Sửa đề: F là giao điểm của tia BA và tia ED
Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>DF=DC
=>ΔDFC cân tại D
a: Xet ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
=>BA=BM
Xét ΔBME vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBE chung
=>ΔBME=ΔBAC
=>BE=BC
=>ΔBEC cân tại B
b: Xét ΔDAE vuông tại A và ΔDMC vuông tại M co
DA=DM
góc ADE=góc MDC
=>ΔDAE=ΔDMC
=>DE=DC
=>D nằm trên trung trực của EC
mà BK là trung trực của EC
nên B,D,K thẳng hàng
a, xét tam giác ABC và tam giác DBE có : góc B chung
AB = BD (Gt)
góc BAC = góc BDE = 90
=> tam giác ABC = tam giác DBE (cgv-gnk)
b, xét tam giác ABH và tam giác DBH có : BH chung
AB = BD (Gt)
góc HAB = góc HDB = 90
=> tam giác ABH = tam giác DBH (ch-cgv)
=> góc ABH = góc DBH (đn) mà BH nằm giữa AB và BD
=> BH là pg của góc ABC (đn)
c, AB = BD (gt) có BD = 6 (gt)
=> AB = 6
BD + DC = BC
BD = 6; CD = 4
=> BC =10
tam giác ABC vuông tại A (Gt)
=> BC^2 = AB^2 + AC^2
=> AC^2 = 10^2 - 6^2
=> AC^2 = 64
=> AC = 8 do AC > 0
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
a)Xét t/g ABD vuông tại A t/g EBD
BD cạnh chung
g ABD = g EBD
Suy ra t/g ABD= t/g EBD(ch-gn)
=>DA=DE(2 cạnh tương ứng)
b)Xét t/g ADF vuông tại A và t/g EDC vuông tại E
g ADF= g CDE(đối đỉnh)
DA=DE(câu a)
Suy ra t/g ADF= t/g EDC(cgv-gn)
=>FD=CD(2 cạnh tương ứng)
=>t/g DFC cân tại D
nguoi tra loi thi ko ****, nguoi la " de" ma ko tra loi thi lai ****, bo tay