Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: $\frac{3}{4}=\tan B=\frac{AC}{AB}$
$\Rightarrow AC=\frac{3}{4}AB=\frac{3}{4}.12=9$ (cm)
$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+9^2}=15$ (cm) - theo định lý Pitago
$\cot C=\frac{AC}{AB}=\tan B=\frac{3}{4}$
$\Rightarrow \widehat{C}=53,13^0$
a: AC=9
b: \(\tan B=\dfrac{AC}{AB}=\dfrac{9}{12}\)
Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}=53^0\)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=CH.BH\Rightarrow BH=\dfrac{AH^2}{CH}=\dfrac{144}{9}=16\)cm
-> BC = CH + BH = 9 + 16 = 25 cm
* Áp dụng hệ thức : \(AB^2=BH.BC=16.25=400\Rightarrow AB=20\)cm
Áp dụng đlí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=625-400=225\)
=> AC = 15 cm
Xét tam giác AHC vuông tại H, theo định lý Py-ta-go ta có:
AC2 = AH2 + HC2 = 122 + 92 = 225
\(\Rightarrow\) AC = \(\sqrt{225}\) = 15 (cm)
Xét tam giác ABC vuông tại A, đường cao AH, theo hệ thức lượng trong tam giác vuông ta có:
AC2 = BC.HC
\(\Leftrightarrow\) BC = \(\dfrac{AC^2}{HC}\) = \(\dfrac{15^2}{9}\) = 25 (cm)
Xét tam giác ABC vuông tại A, theo định lý Py-ta-go ta có:
BC2 = AB2 + AC2
\(\Leftrightarrow\) AB2 = BC2 - AC2 = 252 - 152 = 400
\(\Rightarrow\) AB = \(\sqrt{400}\) = 20 (cm)
Vậy ...
Chúc bn học tốt!
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
\(tanB=\frac{3}{4}\)
\(\Rightarrow\frac{AB}{BC}=\frac{3}{4}\)
Ta có:
\(AC^2+AB^2=BC^2\)
\(\Rightarrow AB^2=BC^2-AC^2=\frac{16}{9}AC^2-AC^2=\frac{7}{9}AC^2=144\)
\(\Rightarrow AC=13,6\)
\(\Rightarrow BC=18,1\)