Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
A A C C B B E E D D I I M M G G J J H H K K
a) Do tam giác ABC vuông cân nên \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Xét tam giác vuông ABE và tam giác vuông ACD có:
AB = AC (gt)
\(\widehat{ABE}=\widehat{ACD}\)
\(\Rightarrow\Delta ABE=\Delta ACD\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow BE=CD;AE=AD\)
b) I là giao điểm của hai tia phân giác góc B và góc C của tam giác ABC nên AI cũng là phân giác góc A.
Do tam giác ABC cân tại A nên AI là phân giác đồng thời là đường cao và trung tuyến.
Vậy thì \(\widehat{AMC}=90^o;BM=MC=AM\)
Từ đó suy ra tam giác AMC vuông cân tại M.
c) Gọi giao điểm của DH, AK với BE lần lượt là J và G.
Do DH và AK cùng vuông góc với BE nên ta có
\(\Delta BDJ=\Delta BHJ;\Delta BAG=\Delta BKG\Rightarrow BD=BH;BA=BK\)
\(\Rightarrow HK=AD\)
Mà AD = AE nên HK = AE. (1)
Do tam giác BAK cân tại B, có \(\widehat{B}=45^o\Rightarrow\widehat{BAK}=\frac{180^o-45^o}{2}=67,5^o\)
\(\Rightarrow\widehat{GAE}=90^o-67,5^o=22,5^o=\frac{\widehat{IAE}}{2}\)
Suy ra AG là phân giác góc IAE.
Từ đó ta có \(\widehat{KAC}=\widehat{ICA}\left(=22,5^o\right)\)
\(\Rightarrow\Delta AKC=\Delta CIA\left(g-c-g\right)\Rightarrow KC=IA\)
Lại có tam giác AIE có AG là phân giác đồng thời đường cao nên nó là tam giác cân, hay AI = AE. Suy ra KC = AE (2)
Từ (1) và (2) suy ra HK = KC.
a) Vì EH ⊥ BC ( gt )
⇒ △ BHE vuông tại H
Xét tam giác vuông BAE và tam giác vuông BHE có :
BE chung
\(\widehat{B_1}=\widehat{B_2}\) ( BE là tia phân giác của \(\widehat{BAC}\))
⇒ △ BAE = △ BHE ( cạnh huyền - góc nhọn )
b) Gọi I là giao điểm của AH và BE
Xét △ ABI và △ HBI có :
BA = BH [ △ BAE = △ BHE (cmt) ]
\(\widehat{B_1}=\widehat{B_2}\) ( BE là tia phân giác của \(\widehat{BAC}\) )
BI chung
⇒ Δ ABI = Δ HBI ( c.g.c )
⇒ \(\widehat{AIB}=\widehat{AIH}\) ( 2 góc tương ứng )
Mà \(\widehat{AIB}+\widehat{AIH}\) = 1800 ( 2 góc kề bù )
⇒ \(\widehat{AIB}=\widehat{AIH}\) = 900
⇒ BI ⊥ AH (1)
Ta có: IA = IH ( Δ ABI = Δ HBI ( cmt )
Mà I nằm giữa hai điểm A và H (2)
⇒ I là trung điểm của AH ( 3)
Từ (1) (2) (3) ⇒ BI là trung trực của AH
Hay BE là trung trực của AH
c) Xét Δ KAE và Δ CHE có:
\(\widehat{KAE}=\widehat{CHE}\) ( = 900 )
AE = HE ( Δ BAE = Δ BHE (cmt)
\(\widehat{AEK}=\widehat{HEC}\) ( 2 góc đối đỉnh )
⇒ Δ KAE = Δ CHE ( g.c.g )
⇒ EK = EC ( 2 cạnh tương ứng )
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: Ta có: ΔBAE=ΔBHE
nên BA=BH và EA=EH
hay BE là đường trung trực của AH
a, Xét tam giác ABE và tam giácKBE
<BAE = <BKE = 90o
BE chung
<ABE = <KBE ( gt )
=>tam giác ABE =tam giác KBE (Cạnh huyền-góc nhọn)
=> AE = EK ( cặp cạnh tương ứng )
b, Có : <BAE = <HCE = 90o (gt)
Mà <BAE và <HCE là 2 góc so le trong
=> AB // CH
=> <ABE = <CHE ( so le trong )
Mà <ABE = <CBE (gt)
=> <CBE = <CHE
=> Tam giác BHC cân
c, gọi I là giao điểm của AK và BE
Xét tam giácABI và tam giácKBI
AB = AK (vì tam giác ABE = tam giác KBE)
<ABE = <KBE (gt)
BI chung
=> tam giác ABI =tam giác KBI (c.g.c)
=> <BIA = <BIK ( cặp góc tương ứng)
Mà <BIA+ <BIK = 180o (kề bù)
=> <BIA = <BIK= 90o
=> BE vuông góc AK
d, Có <EKC = 90o (gt)
=> EC > EK ( Q/hệ giữa cạnh và góc đối diện trong tam giác)
Mà EK = EA (câu a)
=> EC > EA (1)
Tam giác BCH cân tại C (câu b)
=> CB = CH
Mà BK < BC ( vì K ϵ BC )
=> CH >BK
BK = BA ( vì tam giác ABE = tam giác KBE )
=> CH > BA (2)
Có: <ECH = 90o (gt)
=> EH > HC
HC = CB (c.m trên )
Ta có: <BEC lớn hơn <BAE ( t/c góc ngoài )
=> <BEC >90o
=> BC > BE ( q/hệ giữa cạnh và góc đối diện trong tam giác)
Mà BC = CH
=> CH > BE
CH < EH (c.m trên)
=>EH > BE (3)
Từ (1) (2) (3) => BA+BE+EA < EC+CH+HE
=> PABE < PCHE