Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B O C D x y M N H G Q Q' K
A, tam giác AOC vuông tại A
=> góc ACO + góc COA = 90 (đl) (1)
có góc COA + góc COD + góc DOB = 180
có góc COD = 90 (gt)
=> góc COA + góc DOB = 90 ; (1)
=> góc ACO = góc DOB
xét tam giác ACO và tam giác BOD có : góc CAO = góc OBD = 90 (gt)
=> tam giác ACO ~ tam giác BOD (g-g)
=> AC/BO = AO/BD
=> AO.BO = AC.BD
Có O là trung điểm của AB (gt) => AO = OB = 1/2AB
=> 1/2.AB.1/2.AB = AC.BD
=> 1/4AB^2 = AC.BD
=> AB^2 = 4AC.BD
b, tam giác CAO ~ tam giác OBD (Câu a)
=> AC/OB = OC/OD
OA = OB (Câu a)
=> AC/OA = OC/OD
=> AC/OC = OA/OD
=> tam giác ACOO ~ tam giác OCD
=> góc ACO = góc OCD
mà CO nằm giữa CA và CD
=> CO là phân giác của góc ACD (đn)
tự chứng minh AC = CM
c, xét tam giác AMB có : MO là đường trung tuyến (O là trung điểm của AB)
MO = AB/2 (OM = OA do tam giác AOC = tam giác MOC(câu b) và OA = AB/2)
=> tam giác AMB vuông tại M (định lí đảo)
=> AM _|_ NB (1)
xét tam giác ACM có : AC = CM (Câu b)
=> tam giác ACM cân tại C (đn) MÀ có CO là phân giác
=> CO là đường cao của tam giác ACM (đl)
=> CO _|_AM (2)
(1)(2) => CO // BN (tc)
xét tam giác BAN có : O là trung điểm của AB (gt)
=> C là trung điểm của AN (tc)
d, gọi BC cắt MH tại Q
có MH // AN do cùng _|_ BA
xét tam giác BCN và tam giác BCA
=> QM/CN = BQ/BC và QH/CA = BQ/BC (hệ quả)
có CN=CA (câu c)
=> MQ = QH ; Q nằm giữa H và M
=> Q là trung điểm của HM (đn)
kẻ AM cắt BD tại G; Kẻ OK _|_ AB (K nằm cùng 1 nửa mp bờ AB chứa Ax, By)
dài chẳng làm nữa
A B C E D H M
a) Xét tam giác EDB và tam giác EAC có:
\(\hept{\begin{cases}\widehat{E}chung\\\widehat{EAC}=\widehat{EDB}=90^0\end{cases}\Rightarrow\Delta EDB~EAC\left(g.g\right)}\)
\(\Rightarrow\frac{ED}{EB}=\frac{EA}{EC}\)( các cạnh tương ứng tỉ lệ )
\(\Rightarrow\frac{ED}{EA}=\frac{EB}{EC}\)
Xét tam giác EDA và EBC có:
\(\hept{\begin{cases}\widehat{E}chung\\\frac{ED}{EA}=\frac{EB}{EC}\left(cmt\right)\end{cases}\Rightarrow\Delta EDA~\Delta EBC\left(g.g\right)}\)
\(\Rightarrow\widehat{EDA}=\widehat{EBC}\)
b) Kẻ \(MH\perp BC\)\(\left(H\in BC\right)\)
Xét tam giác BMH và tam giác BCD có:
\(\hept{\begin{cases}\widehat{DBC}chung\\\widehat{BHM}=\widehat{BDC}=90^0\end{cases}\Rightarrow\Delta BMH~\Delta BCD\left(g.g\right)}\)
\(\Rightarrow\frac{BM}{BH}=\frac{BC}{BD}\)( các cạnh t.ứng tỉ lệ )
\(\Rightarrow BM.BD=BH.BC\left(1\right)\)
Xét tam giác CMH và tam giác CBA có:
\(\hept{\begin{cases}\widehat{BCA}chung\\\widehat{CHM}=\widehat{CAB}=90^0\end{cases}\Rightarrow\Delta CMH~\Delta CBA\left(g.g\right)}\)
\(\Rightarrow\frac{CM}{CH}=\frac{CB}{CA}\)( các cạnh t.ứng tỉ lệ )
\(\Rightarrow CM.CA=CH.CB\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BM.BD+CM.CA=BC.BH+BC.CH\)
\(\Rightarrow BM.BD+CM.CA=BC.\left(BH+HC\right)\)
\(\Rightarrow BM.BD+CM.CA=BC^2\)không đổi
Vậy khi M di chuyển trên AC thì tổng \(BM.BD+CM.CA\)có giá trị không đổi
1: Xét ΔEAC vuông tạiA và ΔEDB vuông tại D có
góc E chung
Do đó: ΔEAC\(\sim\)ΔEDB
Suy ra: EA/ED=EC/EB
hay EA/EC=ED/EB
Xét ΔEAD và ΔECB có
EA/EC=ED/EB
góc AED chung
Do đó: ΔEAD\(\sim\)ΔECB
Suy ra: \(\widehat{EAD}=\widehat{ECB}\)
2: Xét ΔCEB có
CAlà đường cao
BD là đường cao
CA cắt BD tại M
Do đó: EM\(\perp\)BC