K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔEAC vuông tạiA và ΔEDB vuông tại D có

góc E chung
Do đó: ΔEAC\(\sim\)ΔEDB

Suy ra: EA/ED=EC/EB

hay EA/EC=ED/EB

Xét ΔEAD và ΔECB có

EA/EC=ED/EB

góc AED chung

Do đó: ΔEAD\(\sim\)ΔECB

Suy ra: \(\widehat{EAD}=\widehat{ECB}\)

2: Xét ΔCEB có

CAlà đường cao

BD là đường cao

CA cắt BD tại M

Do đó: EM\(\perp\)BC

29 tháng 3 2018

https://tranvantoancv.violet.vn/present/show/entry_id/11065326

4 tháng 2 2020

A B O C D x y M N H G Q Q' K

A, tam giác AOC vuông tại A 

=> góc ACO + góc COA = 90 (đl)    (1)

có góc COA + góc COD + góc DOB = 180 

có góc COD = 90 (gt)

=> góc COA + góc DOB = 90    ; (1)

=> góc ACO = góc DOB 

xét tam giác ACO và tam giác BOD có : góc CAO = góc OBD = 90 (gt)

=> tam giác ACO ~ tam giác BOD (g-g)

=> AC/BO = AO/BD 

=> AO.BO = AC.BD

Có O là trung điểm của AB (gt) => AO = OB = 1/2AB

=> 1/2.AB.1/2.AB = AC.BD

=> 1/4AB^2 = AC.BD

=> AB^2 = 4AC.BD

b,  tam giác CAO ~ tam giác OBD (Câu a)

=> AC/OB = OC/OD

OA = OB (Câu a)

=> AC/OA = OC/OD 

=> AC/OC = OA/OD 

=> tam giác ACOO ~ tam giác OCD 

=> góc ACO = góc OCD

mà CO nằm giữa CA và CD

=> CO là phân giác của góc ACD (đn)

tự chứng minh AC = CM

c,  xét tam giác AMB có : MO là đường trung tuyến (O là trung điểm của AB)

MO = AB/2 (OM = OA do tam giác AOC = tam giác MOC(câu b) và OA = AB/2)

=> tam giác AMB vuông tại M (định lí đảo)

=> AM _|_ NB                                                 (1)

xét tam giác ACM có : AC = CM (Câu b)

=> tam giác ACM cân tại C (đn) MÀ có CO là phân giác

=> CO là đường cao của tam giác ACM (đl)

=> CO _|_AM                                  (2)

(1)(2) => CO // BN (tc)

xét tam giác BAN có : O là trung điểm của AB (gt)

=> C là trung điểm của AN (tc)

d, gọi BC cắt MH tại Q 

có MH // AN do cùng _|_ BA 

xét tam giác BCN và tam giác BCA 

=> QM/CN = BQ/BC và QH/CA = BQ/BC (hệ quả)

có CN=CA (câu c)

=> MQ = QH ; Q nằm giữa H và M

=> Q là trung điểm của HM (đn)

kẻ AM cắt BD tại G; Kẻ OK  _|_ AB (K nằm cùng 1 nửa mp bờ AB chứa Ax, By)

dài chẳng làm nữa

     

10 tháng 3 2020

A B C E D H M

a) Xét tam giác EDB và tam giác EAC có:

\(\hept{\begin{cases}\widehat{E}chung\\\widehat{EAC}=\widehat{EDB}=90^0\end{cases}\Rightarrow\Delta EDB~EAC\left(g.g\right)}\)

\(\Rightarrow\frac{ED}{EB}=\frac{EA}{EC}\)( các cạnh tương ứng tỉ lệ )

\(\Rightarrow\frac{ED}{EA}=\frac{EB}{EC}\)

Xét tam giác EDA và EBC có:

\(\hept{\begin{cases}\widehat{E}chung\\\frac{ED}{EA}=\frac{EB}{EC}\left(cmt\right)\end{cases}\Rightarrow\Delta EDA~\Delta EBC\left(g.g\right)}\)

\(\Rightarrow\widehat{EDA}=\widehat{EBC}\)

b) Kẻ \(MH\perp BC\)\(\left(H\in BC\right)\)

Xét tam giác BMH và tam giác BCD có:

\(\hept{\begin{cases}\widehat{DBC}chung\\\widehat{BHM}=\widehat{BDC}=90^0\end{cases}\Rightarrow\Delta BMH~\Delta BCD\left(g.g\right)}\)

\(\Rightarrow\frac{BM}{BH}=\frac{BC}{BD}\)( các cạnh t.ứng tỉ lệ )

\(\Rightarrow BM.BD=BH.BC\left(1\right)\)

Xét tam giác CMH và tam giác CBA có:

\(\hept{\begin{cases}\widehat{BCA}chung\\\widehat{CHM}=\widehat{CAB}=90^0\end{cases}\Rightarrow\Delta CMH~\Delta CBA\left(g.g\right)}\)

\(\Rightarrow\frac{CM}{CH}=\frac{CB}{CA}\)( các cạnh t.ứng tỉ lệ )

\(\Rightarrow CM.CA=CH.CB\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BM.BD+CM.CA=BC.BH+BC.CH\)

\(\Rightarrow BM.BD+CM.CA=BC.\left(BH+HC\right)\)

\(\Rightarrow BM.BD+CM.CA=BC^2\)không đổi

Vậy khi M di chuyển trên AC thì tổng \(BM.BD+CM.CA\)có giá trị không đổi