Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
∠(AMB) = ∠(BMC) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy (ABD) = 90o
b. Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
Tự vẽ hình
a) Xét \(\Delta AMC\)và \(\Delta BMD\), ta có:
BM = CM ( M là trung điểm BC )
Góc AMC = Góc DMB ( đối đỉnh )
MA = MD (gt)
=> \(\Delta AMC=\Delta BMD\left(c-g-c\right)\)
b) Vì \(\Delta AMC=\Delta BMD\) ( câu a )
=> Góc ACM = Góc DBC ( hai góc tương ứng )
Mà góc ACM và góc DBC là hai góc so le trong
=> AC // BD
Mà \(AC\perp AB\)
=> \(BD\perp AB\)
=> Góc ABD = 90 độ
c) Vì \(\Delta AMC=\Delta BMD\) ( câu a )
=> AC = BD ( Hai cạnh tương ứng )
Xét \(\Delta ABD\) và \(\Delta BAC\), ta có:
AB là cạnh chung
Góc B = Góc A ( = 90 độ )
AC = BD (cmt)
\(\Rightarrow\Delta ABD=\Delta BAC\left(c-g-c\right)\)
=> AD = BC ( Hai cạnh tương ứng )
Ta lại có: \(AM=\dfrac{1}{2}AD\)
\(\Rightarrow AM=\dfrac{1}{2}BC\)
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
mà góc BAC=90 độ
nên ABDC là hình chữ nhật
=>góc ABD=90 độ
b: Xét ΔABC và ΔBAD có
BA chung
BC=AD
AC=BD
Do đó: ΔABC=ΔBAD
c: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=1/2BC
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
Bn tự vẽ hình nhé!
a) Xét ΔAMC và ΔDMB có:
MB = MC ( M là trung điểm của BC )
∠AMC = ∠DMB ( 2 góc đối đỉnh )
MA = MD ( gt )
=> ΔAMC = ΔDMB ( c.g.c )
b) Vì ΔAMC = ΔDMB ( cmt )
=> ∠DAC = ∠ADB ( 2 góc tương ứng )
=> AC // BD ( 2 góc so le trong bằng nhau )
Mà AC ⊥ AB ( ∠ BAC = 900 )
=> AB ⊥ BD ( định lý từ vuông góc đến song song )
=> ∠ ABD = 900
c) Xét Δ ABC và ΔBAD có :
AB chung
∠BAC = ∠ ABD ( = 900)
AC = BC ( ΔAMC = ΔDMB ( cmt )
=> Δ ABC = ΔBAD ( c.g.c)
=> BC = AD ( 2 cạnh t/ứng )
Ta có : MA = MD ( gt )
Mà M nằm giữa 2 điểm A và D
=> M là t/đ của AD
=> AM = 1/2AD
Mà AD = BC ( cmt )
=> AM= 1/2 BC ( đcm )
Hình tự vẽ nhé:
a) Xét \(\Delta MAC\)và \(\Delta MDB\):
MC=MB(gt)
MA=MD(gt)
\(\widehat{AMC}=\widehat{DMB}\)(đối đỉnh)
\(\Rightarrow\Delta MAC=\Delta MBD\left(c-g-c\right)\)
a) Xét 2 \(\Delta\) \(AMB\) và \(DMC\) có:
\(AM=DM\left(gt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)
\(MB=MC\) (vì M là trung điểm của \(BC\))
=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
b) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)
=> \(AB=CD\) (2 cạnh tương ứng)
=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng)
Hay \(\widehat{ABC}=\widehat{DCB}.\)
c) Xét 2 \(\Delta\) \(ABC\) và \(DCB\) có:
\(AB=CD\left(cmt\right)\)
\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)
Cạnh BC chung
=> \(\Delta ABC=\Delta DCB\left(c-g-c\right).\)
d) Theo câu c) ta có \(\Delta ABC=\Delta DCB.\)
=> \(AC=BD\) (2 cạnh tương ứng)
=> \(\widehat{BAC}=\widehat{CDB}\) (2 góc tương ứng)
Mà \(\widehat{BAC}=90^0\left(gt\right)\)
=> \(\widehat{CDB}=90^0\)
Vậy \(\widehat{CDB}=90^0.\)
Chúc bạn học tốt!
Xét tam giác GMC và tam giác DMB
BM=MC(trung tuyen AM)
MBD=MCG( CG song song với BD)
BMD=CMG( đối đỉnh)
=> tam giác GMC=tam giác DMB
=>MD=MG
Mà MD=1/3 AM nên MG=1/3 AM => AG=2/3AM(Đúng với tính chất ba đường trung tuyến của tam giác luôn rồi nè
Vậy G là trọng tâm
tự kẻ hình nha
a) xét tam giác BMD và tam giác CMA có
AM=MD(gt)
BM=CM(gt)
AMC=BMD( đối đỉnh)
=> tam giác BMD= tam giác CMA(cgc)
=> BDM=MAC( hai góc tương ứng)
mà BDM so le trong với MAC=> AC//BD, BA vuông góc với AC=> BA vuông góc với BD=> ABD=90 độ
b) từ tam giác BMD= tam giác CMA=> BD=AC( hai cạnh tương ứng)
xét tam giác ABC và tam giác BAD có
BD=AC(cmt)
AB chung
BAC=ABD(=90 độ)
=> tam giác ABC= tam giác BAD(cgc)
c) từ tam giác ABC= tam giác BAD => AD=BC( hai cạnh tương ứng)
mà AM=MD=> M là trung điểm của AD
và M là trung điểm của BC=> AM=MD=BM=CM
=> 2AM=BM+CM
=> 2AM=BC
=> AM=1/2BC