Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em mới lớp 8 nên trình bày hơi lỗi xin anh thông cảm.
Xét tam giác HAC và tam giác ABC, ta có:
Góc C: góc chung
góc AHC = góc BAC (=90 độ)
Do đó: tam giác HAC đồng dạng với tam giác ABC
\(\Rightarrow\)\(\frac{HA}{HC}=\frac{AB}{AC}\Rightarrow AH=\frac{ABxHC}{AC}\left(1\right)\)
Xét tam giác HBA và tam giác ABC, ta có:
Góc B: góc chung
góc AHB = góc BAC (=90 độ)
Do đó: tam giác HAC đồng dạng với tam giác ABC
\(\Rightarrow\)\(\frac{HA}{HB}=\frac{AC}{ÁB}\Rightarrow AH=\frac{HBxAC}{AB}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\frac{HBxAC}{AB}=\frac{HCxAB}{AC}\Rightarrow\frac{\left(AB\right)^2}{\left(AC\right)^2}=\frac{HB}{HC}=\frac{9}{4}\Rightarrow\frac{AB}{AC}=\frac{3}{2}\)
VÌ AD là đường phân giác của tam giác ABC nên:
\(\frac{DC}{DB}=\frac{AC}{AB}=\frac{2}{3}\)
Vậy \(\frac{DC}{DB}=\frac{2}{3}\)
\(HB.HC=15^2=225\)
Ta có : \(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.BH\end{cases}\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}\Rightarrow\hept{\begin{cases}\frac{HB}{HC}=\frac{25}{49}\\HB.HC=225\end{cases}\Rightarrow}\hept{\begin{cases}HB.HC.\frac{HB}{HC}=\frac{25}{49}.225\\HB.HC=225\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}HB^2=\frac{5625}{49}\\HB.HC=225\end{cases}\Rightarrow\hept{\begin{cases}HB=\frac{75}{7}\\HC=21\end{cases}}}\)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{DB}{DC}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=30^2=900\)
\(\Leftrightarrow HC^2=1296\)
\(\Leftrightarrow HC=36\left(cm\right)\)
\(\Leftrightarrow HB=25\left(cm\right)\)
\(\Leftrightarrow BC=36+25=61\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=5\sqrt{61}\left(cm\right)\\AC=6\sqrt{61}\left(cm\right)\end{matrix}\right.\)