K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

mk lm đc câu a ồi..m.n giúp mk nốt 2 câu còn lại nhá....c.ơn nhìu

a: Đặt AB/3=AC/4=k

=>AB=3k; AC=4k

Xét ΔBAC vuông tại A có \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AB=6cm; AC=8cm

b: Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đo: ΔCAD cân tại C

hay CA=CD

Xét ΔBAD có

BH là đườg cao

BH là đường trung tuyến

Do đo:ΔBAD cân tại B

Xét ΔCAB và ΔCDB có

CA=CD

AB=DB

CB chung

Do đó: ΔCAB=ΔCDB
Suy ra: \(\widehat{CAB}=\widehat{CDB}=90^0\)

hay ΔBDC vuông tại D

c: Xét ΔDAE có

C là trung điểm của DE

H là trung điểm của DA

DO đó:CH là đường trung bình

=>CH//AE
hay AE//BC

a: Đặt AB/3=AC/4=k

=>AB=3k; AC=4k

Xét ΔBAC vuông tại A có \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AB=6cm; AC=8cm

b: Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đo: ΔCAD cân tại C

hay CA=CD

Xét ΔBAD có

BH là đườg cao

BH là đường trung tuyến

Do đo:ΔBAD cân tại B

Xét ΔCAB và ΔCDB có

CA=CD

AB=DB

CB chung

Do đó: ΔCAB=ΔCDB
Suy ra: \(\widehat{CAB}=\widehat{CDB}=90^0\)

hay ΔBDC vuông tại D

c: Xét ΔDAE có

C là trung điểm của DE

H là trung điểm của DA

DO đó:CH là đường trung bình

=>CH//AE
hay AE//BC

a: Đặt AB/3=AC/4=k

=>AB=3k; AC=4k

Xét ΔBAC vuông tại A có \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AB=6cm; AC=8cm

b: Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đo: ΔCAD cân tại C

hay CA=CD

Xét ΔBAD có

BH là đườg cao

BH là đường trung tuyến

Do đo:ΔBAD cân tại B

Xét ΔCAB và ΔCDB có

CA=CD

AB=DB

CB chung

Do đó: ΔCAB=ΔCDB
Suy ra: \(\widehat{CAB}=\widehat{CDB}=90^0\)

hay ΔBDC vuông tại D

c: Xét ΔDAE có

C là trung điểm của DE

H là trung điểm của DA

DO đó:CH là đường trung bình

=>CH//AE
hay AE//BC

\(\text{#TNam}\)

`a,` Xét Tam giác `AMB` và Tam giác `EMC` có:

`MA=ME (g``t)`

\(\widehat{AMB}=\widehat{CME} (\text {2 góc đối đỉnh})\)

`MB=MC (\text {M là trung điểm của BC})`

`=> \text {Tam giác AMB = Tam giác EMC (c-g-c)}`

`b,` Vì Tam giác `AMB =` Tam giác `EMC (a)`

`-> AB = CE (\text {2 cạnh tương ứng}) (1)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{AHB}=\widehat{DHB}=90^0\)

`\text {BH chung}`

`=> \text {Tam giác ABH = Tam giác DBH (c-g-c)}`

`-> AB = BD (\text {2 cạnh tương ứng}) (2)`

Từ `(1)` và `(2) -> CE = BD.`

`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:

`\text {MH chung}`

\(\widehat{AHM}=\widehat{DHM}=90^0\)

`HA = HD (g``t)`

`=> \text {Tam giác AMH = Tam giác DMH (c-g-c)}`

`-> MA = MD (\text {2 cạnh tương ứng})`

Xét Tam giác `AMD: MA = MD`

`-> \text {Tam giác AMD cân tại M}`

*Hoặc nếu như bạn có học rồi, thì mình có thể dùng cái này cũng được nè cậu:>.

Vì `MH` vừa là đường cao (hạ từ đỉnh `->` cạnh đối diện), vừa là đường trung tuyến.

Theo tính chất của tam giác cân `-> \text {Tam giác AMD là tam giác cân} (đpcm).`

loading...

a: Xét ΔAMB và ΔEMC có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xét ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại B

=>BD=BA=CE

c: Xét ΔMAD có

MH vừa là đường cao, vừa là trung tuyến

=>ΔMAD cân tại M

gCho tam giác Abc vuông tại A (AB>ACgCho tam giác Abc vuông tại A (AB>AC) Gọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .TÍNH ac biết ab=8 , bc=10cd vuông actam giác cae cânbd =ceae vuông edGọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .TÍNH ac biết ab=8...
Đọc tiếp

gCho tam giác Abc vuông tại A (AB>ACgCho tam giác Abc vuông tại A (AB>AC) Gọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .

TÍNH ac biết ab=8 , bc=10

cd vuông ac

tam giác cae cân

bd =ce

ae vuông edGọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .

TÍNH ac biết ab=8 , bc=10

cd vuông ac

tam giác cae cân

bd =ce

Cho tam giác Abc vuông tại A (AB>AC) Gọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .

TÍNH ac biết ab=8 , bc=10

cd vuông ac

tam giác cae cân

bd =ce

ae vuông edCho tam giác Abc vuông tại A (AB>AC) Gọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .

TÍNH ac biết ab=8 , bc=10

cd vuông ac

tam giác cae cân

bd =ce

ae vuông ed

ae vuông ed

0

a: Xét ΔBEA vuông tại E và ΔBEN vuông tại Ecó

BE chung

BA=BN

=>ΔBEA=ΔBEN

b: Xet ΔBAD co

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại B

=>BA=BD

c: Xet ΔNAB có

AH,BE là đường cao

AH cắt BE tại K

=>K là trực tâm

=>NK vuông góc AB

=>NK//AC

28 tháng 4 2023

a: Xét ΔBEA vuông tại E và ΔBEN vuông tại Ecó

BE chung

BA=BN

=>ΔBEA=ΔBEN

b: Xet ΔBAD co

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại B

=>BA=BD

c: Xet ΔNAB có

AH,BE là đường cao

AH cắt BE tại K

=>K là trực tâm

=>NK vuông góc AB

=>NK//AC

28 tháng 11 2021

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

12 tháng 7 2018

a, Xét t/g AHC và t/g DHC có:

AH = DH (gt)

góc AHC = góc DHC = 90 độ

HC chung

=> t/g AHC = t/g DHC (c.g.c) (đpcm)

b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:

AB2 + AC2 = BC2

=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82

=> AC = 8 (cm)

c, Xét t/g AHB và t/g DHE có:

AH = DH (gt)

góc AHB = góc DHE (đối đỉnh)

BH = EH (gt)

=> t/g AHB = t/g DHE (c.g.c) (đpcm)

=> góc HBA = góc DEH (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DE 

Mà AB _|_ AC

=> DE _|_ AC (đpcm)

d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)

Xét t/g AHB và t/g AHE có:

BH = BE (gt)

góc AHB = góc AHE = 90 độ

AH chung

=> t/g AHB = t/g AHE (c.g.c)

=> AB = AE (2 cạnh tương ứng) (2)

Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)

Từ (1),(2),(3) =>  AE + CD > BC (đpcm)

10 tháng 4 2020

1, Xét △ABC vuông tại A có: AC2 + AB2 = BC2 (định lý Pytago)

=> AC2 = BC2 - AB2 = 102 - 82 = 36

=> AC = 6 (cm)

2. Xét △AMB và △DMC 

Có: AM = MD (gt)

     AMB = DMC (2 góc đối đỉnh)

       MB = MC (gt)

=> △AMB = △DMC (c.g.c)

=> MAB = MDC (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DC (dhnb)

Mà AB ⊥ AC

=> CD ⊥ AC (từ vuông góc đến song song)

3. Xét △AHC và △EHC cùng vuông tại H

Có: CH là cạnh chung

       AH = EH (gt)

=> △AHC = △EHC (2cgv)

=> AC = EC (2 cạnh tương ứng)

=> △ACE cân tại C

4, Xét △CAM và △BDM

Có: AM = DM (gt)

    CMA = BMD (2 góc đối đỉnh)

      CM = MB (gt)

=> △CAM = △BDM (c.g.c)

=> AC = BD (2 cạnh tương ứng)

Mà AC = CE (cmt)

=> BD = CE