K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

Xin lỗi bạn nha ! Vì lỗi nên mình không vẽ được hình cho bạn ,có j bạn tự vẽ nha !!! 

Bài giải 

a) AB là tiếp tuyến tại A của ( C) 

=> \(\widehat{BAF}=\widehat{AEF}\)

Xét \(\Delta ABF\)và \(\Delta EBA\)có : 

\(\hept{\begin{cases}\widehat{ABE}chung\\\widehat{BAF}=\widehat{BEA}\end{cases}\Rightarrow\Delta ABF}\infty\Delta EBA\left(g-g\right)\)

\(\Rightarrow\frac{AB}{BE}=\frac{BF}{AB}\Rightarrow AB^2=BE.BF\)

Xét \(\Delta ABC\) vuông tại A có đường cao AH . 

=> AB2 =BH . BC 

=> BH . BC = BE . BF ( =AB2 ) 

Xét \(\Delta BHF\)và \(\Delta BEC\)có : 

\(\frac{BH}{BE}=\frac{BF}{BC}\)

\(\widehat{CBE}\)chung 

=> \(\Delta BHF\infty\Delta BEC\left(c-g-c\right)\)

=> \(\widehat{BHF}=\widehat{BEC}\)

*) \(\widehat{BHF}+\widehat{FHC}=\widehat{BEC}+\widehat{FHC}\)

\(\Leftrightarrow\widehat{FEC}+\widehat{FHC}=\widehat{BHC}=180^O\)

=> EFHC là tứ giác nội tiếp ( có tổng 2 góc đối =180 o 

b) EFHC là tứ giác nội tiếp 

=> \(\widehat{EHC}=\widehat{EFC}\)( cùng chắn góc EC ) 

   \(\widehat{FEC}=\widehat{BHF}\)( c/ m cân A ) 

Mà \(\widehat{FEC}=\widehat{EFC}\)\(\Delta ECF\)cân ở C ) 

=> \(\widehat{EHC}=\widehat{BHF}\)

=> 90O \(-\widehat{EHC}=90^O-\widehat{BHF}\)

<=> \(\widehat{EHD}=\widehat{FHD}\)

=> HD là phân giác góc EHF

9 tháng 4 2020

Bạn giải câu c dùm mình được không?

Bài 1: 

a: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

c: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

Xét tứ giác BICD có 

BI//CD(cùng vuông góc với AC)

CI//BD(cùng vuông góc với AB)

Do đó: BICD là hình bình hành

Bài 2:

a: Xét (O) có 

MN=EF

OH là khoảng cách từ O đến dây MN

OK là khoảng cách từ O đến dây EF
Do đó: OH=OK

Xét ΔAHO vuông tại H và ΔAKO vuông tại K có

AO chung

OH=OK

Do đó: ΔAHO=ΔAKO

Suy ra: AH=AK

b: Xét ΔOHM vuông tại H và ΔOKE vuông tại K có 

OM=OE

OH=OK

Do đó: ΔOHM=ΔOKE

Suy ra: HM=KE

Ta có: AM+MH=AH

AE+EK=AK

mà AH=AK

và HM=KE

nên AM=AE

31 tháng 1 2019

b/ Gọi G là giao điểm của AB và DF

Ta có :

  Góc ACQ = góc AHQ ( t/g ACHQ n.t )

  Góc ACQ = góc ADF ( 2 góc n.t chắn cung AF )

=> Góc AHQ = góc ADF

Mà 2 góc ở vị trí đồng vị 

Nên \(HQ//DF\)

Mặc khác \(HQ\perp AB\)tại Q

=> \(DF\perp AB\)tại G

Xét tứ giác GBNF ta có:\(B\widehat{G}F+B\widehat{N}F=180^0\)

=> Tứ giác GBNF nội tiếp =>\(N\widehat{G}F=N\widehat{B}F\)

Mà \(N\widehat{B}F=C\widehat{A}F\)( tứ giác ACBF n.t (O))

Nên \(N\widehat{G}F=C\widehat{A}F\left(1\right)\)

Xét tứ giác GMAF ta có: \(A\widehat{M}F=A\widehat{G}F\left(=90^0\right)\)

=> Tứ giác GMAF n.t =>\(M\widehat{A}F+M\widehat{G}F=180^0\left(2\right)\)

(1) và (2) => \(N\widehat{G}F+M\widehat{G}F=180^0\)

=> \(\overline{M,G,N}\)

Mà G là giao điểm của AB và DF

Nên MN,AB,DF đồng quy tại G

MN là đường thẳng simson nha bạn

7 tháng 7 2020

khong biet

a nha

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.b/ CM: EM = EFc/ Gọi I là tâm đường tròn ngoại tiếp...
Đọc tiếp

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.

a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.

b/ CM: EM = EF

c/ Gọi I là tâm đường tròn ngoại tiếp tam giác DMF. CM góc ABI có số đo không đổi khi M di động trên cung \(\widebat{BD}\)

Bài 2: Cho tam giác đều ABC nội tiếp trong đường tròn (O). Một đường thẳng d thay đổi đi qua A, cắt (O) tại điểm thứ hai là E, cắt hai tiêp tuyến kẻ từ B và C của đường tròn (O) lần lượt tại M và N sao cho A,M,N nằm ở cùng nửa mặt phẳng bờ BC. Gọi giao điểm của hai đường thẳng MC và BN tại F. CMR:

a/ Hai tam giác MBA và CAN dồng dạng và tích MB.CN không đổi.

b/ Tứ giác BMEF nội tiếp trong một đường tròn.

c/ Đường thẳng EF luôn đi qua một điểm cố định khi (d) thay đổi.

0
14 tháng 7 2020

a) Ta có \(IM//AE\)suy ra \(\widehat{MIH}=\widehat{EAH}\). Mà \(\widehat{EAH}=\widehat{ECH}\)nên \(\widehat{MIH}=\widehat{MCH}\). Suy ra tứ giác CIMH nội tiếp.

Dễ dàng chỉ ra được ED là tiếp tuyến của \(\left(O\right)\)suy ra \(\widehat{HED}=\widehat{HCE}\)\(\left(1\right)\)

Do tứ giác CIMH nội tiếp nên \(\widehat{CHM}=90^0\)suy ra \(\widehat{HCM}+\widehat{HMC}=90^0\)

Mà \(\widehat{HMD}+\widehat{HMC}=90^0\)nên \(\widehat{HCM}=\widehat{HMD}\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{HED}=\widehat{HMD}\)nên tứ giác EMHD nội tiếp. Do đó \(\widehat{HDM}=\widehat{HEM}\)mà \(\widehat{HEM}=\widehat{HCD}\)nên \(\widehat{HDM}=\widehat{HCD}\)

Từ đó chứng minh được BD là tiếp tuyến của \(\left(O_1\right)\)

b) Sử dụng tính chất đường nối tâm vuông góc với dây chung ta có: \(OO_2\perp HE,O_2O_1\perp HD\)và do \(EH\perp HD\)suy ra \(OO_2\perp O_2O_1\)

Dễ thấy \(\widehat{COM}=45^0\)suy ra \(\widehat{CAE}=45^0\)nên \(\widehat{O_2OO_1}=45^0\)\(\Delta O_2OO_1\)vuông cân tại \(O_2\)

Tứ giác OCDE là hình vuông cạnh R và \(O_2\) là trung điểm của DE nên ta tính được \(O_2O^2=\frac{5R^2}{4}\)

.Vậy diện tích \(\Delta O_2OO_1\)  là\(\frac{5R^2}{8}\)

23 tháng 1 2019

A B C O O' H P M E F G I K Q T S A 0 R

a) Gọi O' là đối xứng của O qua B ta có O'B=R (không đổi). Dựng đường tròn (O',R) thì (O') cố định.

Ta sẽ chứng minh M thuộc (O'). Thật vậy:

Xét \(\Delta\)ABO và \(\Delta\)MBO' có: ^ABO = ^MBO' (Đối đỉnh); BO=BO'; BA=BM => \(\Delta\)ABO = \(\Delta\)MBO' (c.g.c)

=> OA = O'M (2 cạnh tương ứng). Mà OA = R nên O'M = R => M thuộc đường tròn (O';R)

Vậy M luôn nằm trên (O';R) cố định (đpcm).

b) Lấy T là trung điểm đoạn AH. Kẻ đường kính FR của (O). Gọi EF cắt AG tại K.

Dễ thấy IT là đường trung bình trong \(\Delta\)AHC => IT // AC => IT vuông góc AB (Do ^BAC=900)

Xét \(\Delta\)BAI: AH vuông góc BI; IT vuông góc AB (cmt), T thuộc AH => T là trực tâm \(\Delta\)BAI

=> BT vuông góc AI. Xét \(\Delta\)MAH: T trung điểm AH, B trung điểm AM => BT // MH

Do đó: AI vuông góc MH hay AG vuông góc EF tại K. Áp dụng ĐL Pytagore:

\(AF^2+FG^2+GE^2+EA^2=2\left(KA^2+KF^2+KG^2+KE^2\right)=2\left(AF^2+GE^2\right)\)(*)

Ta có EF vuông góc ER và EF vuông góc AG => AG // ER => Tứ giác AERG là hình thang cân => GE = AR

Từ đó (*) trở thành: \(AF^2+FG^2+GE^2+EA^2=2\left(AF^2+AR^2\right)=2\left(2R\right)^2=8R^2=const\)

Vậy biểu thức trên có giá trị ko đổi khi A di chuyển (đpcm).

c) Kẻ HQ vuông góc cạnh AC. Gọi S là tâm ngoại tiếp \(\Delta\)BCP. Gọi bán kính đường rtonf (BCP) là R0

Ta có: AP.AB = AQ.AC (=AH2) (Theo hệ thức lượng) => Tứ giác BPQC nội tiếp hoặc Q nằm trên (BCP)

=> S nằm trên trung trực của PQ. Dễ có T là trung điểm PQ (Vì tứ giác APHQ là hcn)

Nên ST vuông góc PQ tại T. Theo ĐL Pytagore (cho \(\Delta\)PTS) có: \(R_0=SP=\sqrt{PT^2+ST^2}\)(1)

Mặt khác: ^OAC = ^OCA = ^APQ => OA vuông góc PQ. Mà ST vuông góc PQ => OA // ST

Kết hợp với AT // OS (Cùng vuông góc BC) => Tứ giác ATSO là hbh => ST = OA = R (2)

Từ (1) và (2) => \(R_0=\sqrt{PT^2+R^2}=\sqrt{\frac{AH^2}{4}+R^2}\)(Vì PT=PQ/2=AH/2)

=> R0 lớn nhất <=> AH lớn nhất <=> A là điểm chính giữa cung BC của (O). Khi đó AH < R

Vậy nên \(R_0\le\sqrt{\frac{R^2}{4}+R^2}=\frac{R\sqrt{5}}{2}=const\). Đạt được khi A trùng với trung điểm cung BC (A0).