K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
9 tháng 6 2021

d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)). 

suy ra \(AE\perp CD\).

Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).

Ta có: 

\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))

suy ra \(\widehat{CAE}=\widehat{ABM}\)

mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)

do đó \(BM\perp AE\).

Từ đây ta có đpcm. 

7 tháng 10 2018

A B C D H E K I F

Kéo dài tia KI cắt tia BA tại điểm F.

Xét \(\Delta\)DFK có: E là trung điểm DK; AE // KF => A là trung điểm của DF

=> AD = AF. Mà AD = AC nên AF = AC 

Ta có: IK // AH; AH vuông góc BC => IK vuông góc BC hay FK vuông góc BC

=> ^AFI = ^ACB (Cùng phụ ^AIF) 

Xét \(\Delta\)FAI và \(\Delta\)CAB có: AF = AC; ^FAI = ^CAB (=900); ^AFI = ^ACB (cmt) => \(\Delta\)FAI = \(\Delta\)CAB (g.c.g)

=> AI = AB (2 cạnh tương ứng) (đpcm).