\(\overrigh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Lời giải:

a)

\(\bullet \overrightarrow{IM}=\frac{1}{2}\overrightarrow{BM}=\frac{1}{2}(\overrightarrow{BA}+\overrightarrow{AM})=\frac{1}{2}(\overrightarrow{BA}+\frac{1}{2}\overrightarrow{AC})\)

\(=-\frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}\)

\(\bullet \overrightarrow{AI}=\overrightarrow{AM}+\overrightarrow{MI}=\frac{1}{2}\overrightarrow{AC}-\overrightarrow{IM}=\frac{1}{2}\overrightarrow{AC}-(-\frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC})\)

\(=\frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}\)

b)

Để \(\overline{A,I,K}\) thì tồn tại \(m\in\mathbb{R}|\overrightarrow{AI}=m\overrightarrow{AK}\)

\(\Leftrightarrow \overrightarrow{AI}=m(\overrightarrow{AB}+\overrightarrow{BK})\)

\(\Leftrightarrow \overrightarrow{AI}=m(\overrightarrow{AB}+x\overrightarrow{BC})\)

\(\Leftrightarrow \overrightarrow{AI}=m\overrightarrow{AB}+mx(\overrightarrow{BA}+\overrightarrow{AC})\)

\(\Leftrightarrow \frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}=(m-mx)\overrightarrow{AB}+mx\overrightarrow{AC}\)

\(\Rightarrow m-mx=\frac{1}{2}; mx=\frac{1}{4}\Rightarrow m=\frac{3}{4}; x=\frac{1}{3}\)

7 tháng 11 2018

b) giả sử ta có A, I, K thẳng hàng=> ta có tỉ lệ \(\dfrac{AI}{AK}\)(1)

AK= AB+ BK

AK= AB+ xBC

AK= AB+ xBA+ x AC

AK= (1-x) AB+ xAC(2)

mà từ câu a) ta đã tìm được AI= 1/2AB+ 1/4AC(3)

từ (1), (2) và (3)=> \(\dfrac{1}{2-2x}=\dfrac{1}{4x}\)=> x=1/3

16 tháng 5 2017

A B C D I M
a)
\(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)=\dfrac{1}{2}\left(\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\right)=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\).
b)
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+x\overrightarrow{BC}\)\(=\overrightarrow{AB}+x\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\left(1-x\right)\overrightarrow{AB}+x\overrightarrow{AC}\).
c) A, M, I thẳng hàng khi và chỉ khi hai véc tơ \(\overrightarrow{AM};\overrightarrow{AI}\) cùng phương
hay \(\dfrac{1-x}{\dfrac{1}{2}}=\dfrac{x}{\dfrac{3}{8}}\Leftrightarrow\dfrac{3}{8}\left(1-x\right)=\dfrac{1}{2}x\)
\(\Leftrightarrow\dfrac{7}{8}x=\dfrac{3}{8}\)\(\Leftrightarrow x=\dfrac{3}{7}\).


14 tháng 11 2022

Câu 1:

Gọi E là trung điểm của KC

=>AK=KE=EC

Xét ΔBKC có CM/CB=CE/CK

nên ME//BK

Xét ΔAME có AI/AM=AK/AE

nên IK//ME

=>IK//BK

=>B,I,K thẳng hàng

23 tháng 7 2019

Bài 1 và Bài 2 tương tự nhau nên mk sẽ chỉ CM bài 1 thôi nha

\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\overrightarrow{AB}+\overrightarrow{CD}=0\)

\(\Rightarrow\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}=0\)

\(\Leftrightarrow\overrightarrow{AD}+\overrightarrow{CB}=0\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)

Bài 3:

Xét \(\Delta AIP\) theo quy tắc trung điểm có:

\(\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}}{2}\)

Làm tương tự vs các tam giác còn lại

\(\Rightarrow\overrightarrow{IB}=\frac{\overrightarrow{IN}+\overrightarrow{IC}}{2}\)

\(\Rightarrow\overrightarrow{IA}=\frac{\overrightarrow{IB}+\overrightarrow{IM}}{2}\)

Cộng vế vs vế

\(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}+\overrightarrow{IN}+\overrightarrow{IC}+\overrightarrow{IB}+\overrightarrow{IM}}{2}\)

\(\Leftrightarrow2\overrightarrow{IA}+2\overrightarrow{IB}+2\overrightarrow{IC}=\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\)

\(\Leftrightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\left(đpcm\right)\)