K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBHA vuông tại H và ΔBHD vuông tại H có

BH chung

HA=HD

Do đó: ΔBHA=ΔBHD

b: Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAD cân tai C

hay CA=CD

c: Xét ΔAHE vuông tại H và ΔDHB vuông tại H có

HA=HD

\(\widehat{HAE}=\widehat{HDB}\)

Do đó: ΔAHE=ΔDHB

Suy ra: HE=HB

hay H là trung điểm của BE

7 tháng 1 2022

Tham khảo!

18 tháng 12 2016

A B C D H E

a) Xét ΔABH vÀ ΔDBH có:

BH:cạnh chung

\(\widehat{AHB}=\widehat{DHB}=90^o\)

AH=DH(gt)

=> ΔABH=ΔDBH(c.g.c)

b)Xét ΔAHC và ΔDHC có:

AH=DH(gt)

\(\widehat{AHC}=\widehat{DHC}=90^o\)

HC: cạnh chung

=> ΔAHC=ΔDHC(c.g.c)

=> AC=CD

c) Xét ΔBHD và ΔEHA có:

\(\widehat{BHD}=\widehat{EHA}=90^o\)

DH=AH(gt)

\(\widehat{BDH}=\widehat{EAH}\) ( sole trong do AE//BD)

=> ΔBHD=ΔEHA(g.c.g)

=> BH=EH

=>H là trung điểm của BE