\(\frac{1}{4}\)AB, AN=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 10 2020

\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}=-\frac{1}{4}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\)

\(\overrightarrow{NP}=\overrightarrow{NC}+\overrightarrow{CP}=\frac{1}{3}\overrightarrow{AC}+\frac{1}{5}\overrightarrow{BC}=\frac{1}{3}\overrightarrow{AC}+\frac{1}{5}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\frac{1}{3}\overrightarrow{AC}-\frac{1}{5}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}=-\frac{1}{5}\overrightarrow{AB}+\frac{8}{15}\overrightarrow{AC}=\frac{4}{5}\left(-\frac{1}{4}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{NP}=\frac{4}{5}\overrightarrow{MN}\Rightarrow M;N;P\) thẳng hàng

28 tháng 10 2020

Hình bạn tự vẽ :

AM=AB+BM

=AB+2/3BC

=AB +2/3(BA+AC)

=AB-2/3AB+2/3C

= 1/3 AB + 2/3AC

1 tháng 8 2019

Đok đề cứ thấy sai sai... Sao cho J lại thoả mãn \(\overrightarrow{BC}=\frac{1}{2}\overrightarrow{AC}-\frac{2}{3}\overrightarrow{AB}\) :))

28 tháng 7 2019

\(\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}\)

\(\overrightarrow{BP}=\overrightarrow{BC}+\overrightarrow{CP}\)

\(\overrightarrow{CM}=\overrightarrow{CA}+\overrightarrow{AM}\)

Cộng vế vs vế:

\(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}+\overrightarrow{BN}+\overrightarrow{CP}+\overrightarrow{AM}\)

\(=\overrightarrow{AC}+\overrightarrow{CA}+\frac{1}{3}\left(\overrightarrow{BC}+\overrightarrow{CA}+\overrightarrow{AB}\right)\)

\(=0+\frac{1}{3}\left(\overrightarrow{BA}+\overrightarrow{AB}\right)=0\) (đpcm)

28 tháng 7 2019

xin slot để làm

20 tháng 11 2019

a/ \(\overrightarrow{AC}=3\overrightarrow{AM};\overrightarrow{BN}=\frac{1}{2}\overrightarrow{BC}\)

\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}=\frac{1}{3}\overrightarrow{CA}+\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}\)

\(=\frac{1}{3}\overrightarrow{CB}+\frac{1}{3}\overrightarrow{CD}+\overrightarrow{DC}+\frac{1}{2}\overrightarrow{BC}=\frac{2}{3}\overrightarrow{DC}+\frac{1}{6}\overrightarrow{BC}=\frac{2}{3}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BA}+\frac{1}{6}\overrightarrow{AC}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}\)

Hmm, MN làm sao vuông góc vs BC đc. Nó chỉ vuông góc khi M là TĐ của AC thôi, bởi N là trung điểm của BC rồi mà, hại não :((

2/\(\overrightarrow{BK}=\frac{4}{13}\overrightarrow{BA}\Rightarrow\overrightarrow{BC}+\overrightarrow{CK}=\frac{4}{13}\overrightarrow{BC}+\frac{4}{13}\overrightarrow{CA}\)

\(\Leftrightarrow\overrightarrow{CK}=\frac{9}{13}\overrightarrow{CB}+\frac{4}{13}\overrightarrow{CA}\)

\(\overrightarrow{GB}+\overrightarrow{GM}+\overrightarrow{GN}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{GC}+\overrightarrow{CB}+\overrightarrow{GC}+\overrightarrow{CM}+\overrightarrow{GC}+\overrightarrow{CN}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{GC}+\overrightarrow{CB}+\overrightarrow{CN}+\overrightarrow{NM}+\overrightarrow{CN}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{GC}+\overrightarrow{CB}+2\overrightarrow{CN}+\frac{1}{2}\overrightarrow{BA}+\frac{1}{6}\overrightarrow{CA}=\overrightarrow{0}\)

Ta có : \(\overrightarrow{CN}=\frac{1}{2}\overrightarrow{CB}\Rightarrow3\overrightarrow{GC}+\overrightarrow{CB}+\overrightarrow{CB}+\frac{1}{2}\overrightarrow{BA}+\frac{1}{6}\overrightarrow{CA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{CG}=\frac{2}{3}\overrightarrow{CB}+\frac{1}{6}\overrightarrow{BA}+\frac{1}{18}\overrightarrow{CA}\)

\(\Leftrightarrow\overrightarrow{CG}=\frac{2}{3}\overrightarrow{CB}+\frac{1}{6}\overrightarrow{BC}+\frac{1}{6}\overrightarrow{CA}+\frac{1}{18}\overrightarrow{CA}\)

\(=\frac{1}{2}\overrightarrow{CB}+\frac{2}{9}\overrightarrow{CA}\)

\(\overrightarrow{CK}=\frac{18}{13}\overrightarrow{CG}\Rightarrow\) C,G,K thẳng hàng

23 tháng 11 2019

cảm ơn bạn