Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh tam giác ADB đồng dạng với tam giác ABC theo trường hợp canh góc cạnh
nen góc ADB=70 =>góc bdc=110
chứng minh:
ta có: ad/ab = 9/12 = 3/4 ; ab/ac =12/16 = 3/4 => ad/ab = ab/ac (1)
ta xét: tam giác abd & tam giác acb
góc bad chung (1)
=> tam giác abd có tam giác acb
=> góc bda = góc cba = 70 độ
ta có: (góc) bda + bdc = 180 độ ( hai góc kề bù)
=> bdc = 180 - 70
=> bdc = 110 độ
A)\(\dfrac{AD}{AB}=\dfrac{4}{8}=0,5\)
\(\dfrac{AB}{AC}=\dfrac{8}{16}=0,5\)
=>\(\dfrac{AD}{AB}=\dfrac{AB}{AC}\)
Xét ΔABD và ΔACB có:
\(\dfrac{AD}{AB}=\dfrac{AB}{AC}\left(CMT\right)\)
GÓC A chung
=>ΔABD∼ΔACB (TH2)
lÀM ĐƯỢC THẾ NÀY THÔI