Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác BDC ta có
E là trung điểm DB ( vì EB = ED)
M là trung điểm của BC (GT)
=> ME là đường trung bình của tam giác BDC
=> ME //DC ; ME = 1/2DC
b) xét tam giác AEM ta có
D là trung điểm AE ( vì AD = DE)
DC // EM ( câu a)
=> DC đi qua trung điểm AM
=> I là trung điểm AM
Giải
Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\) là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì
\(MI=KN=\frac{DE}{2}\left(1\right)\)
\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)
\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)
\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha
a) Xét ΔBCD có
M là trung điểm của BC
E là trung điểm của BD
Do đó: ME là đường trung bình của ΔBCD(Định nghĩa đường trung bình của tam giác)
Suy ra: ME//CD và \(ME=\dfrac{CD}{2}\)(Định lí 2 về đường trung bình của tam giác)
b) Xét ΔAEM có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)
c) Xét ΔAEM có
D là trung điểm của AE
I là trung điểm của AM
Do đó: DI là đường trung bình của ΔAEM
Suy ra: DI//EM và \(DI=\dfrac{EM}{2}\)(Định lí 2 về đường trung bình của tam giác)
Ta có: \(DI=\dfrac{EM}{2}\)(cmt)
nên \(EM=2\cdot DI\)
\(\Leftrightarrow\dfrac{DC}{2}=2\cdot DI\)
\(\Leftrightarrow DC=4\cdot DI\)
\(\Leftrightarrow DC-DI=4DI-DI\)
\(\Leftrightarrow CI=3DI\)
b, Gọi E là TĐ DC. => DE=EC (1)
M là TĐ BC, E là TĐ DC => ME là đường TB tam giác DBC => ME// BD hay ME//DI
Xét tam giác AME có DI//ME và I là TĐ AM => D là TĐ AE => AD=DE (2)
Từ (1) và (2) => DE=EC=AD
=> DC=2AD
Lời giải:
Áp dụng định lý Menelaus cho tam giác $ABM$ và $D,I,C$ thẳng hàng:
$\frac{AD}{DB}.\frac{IM}{IA}.\frac{CB}{CM}=1$
$\Rightarrow \frac{1}{2}.\frac{IM}{IA}.2=1$
$\Rightarrow \frac{IM}{IA}=1\Rightarrow IM=IA$ hay $I$ là trung điểm của $AM$.
Tiếp tục áp dụng định lý Menelaus cho tam giác $CBD$ có $I,A,M$ thẳng hàng:
$\frac{MC}{MB}.\frac{ID}{IC}.\frac{AB}{AD}=1$
$\Rightarrow 1.\frac{ID}{IC}.3=1$
$\Rightarrow \frac{ID}{IC}=\frac{1}{3}\Rightarrow CI=3DI$
Hình vẽ: